New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rbaibr | GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (φ ↔ (ψ ∧ χ)) |
Ref | Expression |
---|---|
rbaibr | ⊢ (χ → (ψ ↔ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ)) | |
2 | ancom 437 | . . 3 ⊢ ((ψ ∧ χ) ↔ (χ ∧ ψ)) | |
3 | 1, 2 | bitri 240 | . 2 ⊢ (φ ↔ (χ ∧ ψ)) |
4 | 3 | baibr 872 | 1 ⊢ (χ → (ψ ↔ φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ssunsn2 3865 |
Copyright terms: Public domain | W3C validator |