| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rbaibr | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (φ ↔ (ψ ∧ χ)) |
| Ref | Expression |
|---|---|
| rbaibr | ⊢ (χ → (ψ ↔ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ)) | |
| 2 | ancom 437 | . . 3 ⊢ ((ψ ∧ χ) ↔ (χ ∧ ψ)) | |
| 3 | 1, 2 | bitri 240 | . 2 ⊢ (φ ↔ (χ ∧ ψ)) |
| 4 | 3 | baibr 872 | 1 ⊢ (χ → (ψ ↔ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: ssunsn2 3866 |
| Copyright terms: Public domain | W3C validator |