NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  baibr GIF version

Theorem baibr 872
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
Hypothesis
Ref Expression
baib.1 (φ ↔ (ψ χ))
Assertion
Ref Expression
baibr (ψ → (χφ))

Proof of Theorem baibr
StepHypRef Expression
1 baib.1 . . 3 (φ ↔ (ψ χ))
21baib 871 . 2 (ψ → (φχ))
32bicomd 192 1 (ψ → (χφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  rbaibr  874  pm5.44  877  exmoeu2  2247  ssnelpss  3614  brinxp  4837
  Copyright terms: Public domain W3C validator