| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > re1axmp | GIF version | ||
| Description: ax-mp 5 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| re1axmp.min | ⊢ φ |
| re1axmp.maj | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| re1axmp | ⊢ ψ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | re1axmp.min | . 2 ⊢ φ | |
| 2 | re1axmp.maj | . . 3 ⊢ (φ → ψ) | |
| 3 | rb-imdf 1515 | . . . 4 ⊢ ¬ (¬ (¬ (φ → ψ) ∨ (¬ φ ∨ ψ)) ∨ ¬ (¬ (¬ φ ∨ ψ) ∨ (φ → ψ))) | |
| 4 | 3 | rblem6 1527 | . . 3 ⊢ (¬ (φ → ψ) ∨ (¬ φ ∨ ψ)) |
| 5 | 2, 4 | anmp 1516 | . 2 ⊢ (¬ φ ∨ ψ) |
| 6 | 1, 5 | anmp 1516 | 1 ⊢ ψ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |