NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  re1axmp GIF version

Theorem re1axmp 1529
Description: ax-mp 5 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
re1axmp.min φ
re1axmp.maj (φψ)
Assertion
Ref Expression
re1axmp ψ

Proof of Theorem re1axmp
StepHypRef Expression
1 re1axmp.min . 2 φ
2 re1axmp.maj . . 3 (φψ)
3 rb-imdf 1515 . . . 4 ¬ (¬ (¬ (φψ) φ ψ)) ¬ (¬ (¬ φ ψ) (φψ)))
43rblem6 1527 . . 3 (¬ (φψ) φ ψ))
52, 4anmp 1516 . 2 φ ψ)
61, 5anmp 1516 1 ψ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator