New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rb-imdf | GIF version |
Description: The definition of implication, in terms of ∨ and ¬. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rb-imdf | ⊢ ¬ (¬ (¬ (φ → ψ) ∨ (¬ φ ∨ ψ)) ∨ ¬ (¬ (¬ φ ∨ ψ) ∨ (φ → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor 401 | . 2 ⊢ ((φ → ψ) ↔ (¬ φ ∨ ψ)) | |
2 | rb-bijust 1514 | . 2 ⊢ (((φ → ψ) ↔ (¬ φ ∨ ψ)) ↔ ¬ (¬ (¬ (φ → ψ) ∨ (¬ φ ∨ ψ)) ∨ ¬ (¬ (¬ φ ∨ ψ) ∨ (φ → ψ)))) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ ¬ (¬ (¬ (φ → ψ) ∨ (¬ φ ∨ ψ)) ∨ ¬ (¬ (¬ φ ∨ ψ) ∨ (φ → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: re1axmp 1529 re2luk1 1530 re2luk2 1531 re2luk3 1532 |
Copyright terms: Public domain | W3C validator |