| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > re1tbw3 | GIF version | ||
| Description: tbw-ax3 1467 rederived from merco2 1501. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| re1tbw3 | ⊢ (((φ → ψ) → φ) → φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mercolem2 1503 | . 2 ⊢ (((φ → φ) → φ) → (φ → (φ → φ))) | |
| 2 | mercolem2 1503 | . . 3 ⊢ (((φ → ψ) → φ) → ((((φ → φ) → φ) → (φ → (φ → φ))) → (((φ → ψ) → φ) → φ))) | |
| 3 | mercolem6 1507 | . . 3 ⊢ ((((φ → ψ) → φ) → ((((φ → φ) → φ) → (φ → (φ → φ))) → (((φ → ψ) → φ) → φ))) → ((((φ → φ) → φ) → (φ → (φ → φ))) → (((φ → ψ) → φ) → φ))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((((φ → φ) → φ) → (φ → (φ → φ))) → (((φ → ψ) → φ) → φ)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (((φ → ψ) → φ) → φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
| This theorem is referenced by: re1tbw4 1513 |
| Copyright terms: Public domain | W3C validator |