NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  re1tbw2 GIF version

Theorem re1tbw2 1511
Description: tbw-ax2 1466 rederived from merco2 1501. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re1tbw2 (φ → (ψφ))

Proof of Theorem re1tbw2
StepHypRef Expression
1 mercolem1 1502 . . . 4 (((φφ) → φ) → (φ → (ψφ)))
2 mercolem1 1502 . . . 4 ((((φφ) → φ) → (φ → (ψφ))) → (φ → (ψ → (φ → (ψφ)))))
31, 2ax-mp 5 . . 3 (φ → (ψ → (φ → (ψφ))))
4 mercolem6 1507 . . 3 ((φ → (ψ → (φ → (ψφ)))) → (ψ → (φ → (ψφ))))
53, 4ax-mp 5 . 2 (ψ → (φ → (ψφ)))
6 mercolem6 1507 . 2 ((ψ → (φ → (ψφ))) → (φ → (ψφ)))
75, 6ax-mp 5 1 (φ → (ψφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319  df-fal 1320
This theorem is referenced by:  re1tbw4  1513
  Copyright terms: Public domain W3C validator