New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > re1tbw2 | GIF version |
Description: tbw-ax2 1466 rederived from merco2 1501. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
re1tbw2 | ⊢ (φ → (ψ → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mercolem1 1502 | . . . 4 ⊢ (((φ → φ) → φ) → (φ → (ψ → φ))) | |
2 | mercolem1 1502 | . . . 4 ⊢ ((((φ → φ) → φ) → (φ → (ψ → φ))) → (φ → (ψ → (φ → (ψ → φ))))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (φ → (ψ → (φ → (ψ → φ)))) |
4 | mercolem6 1507 | . . 3 ⊢ ((φ → (ψ → (φ → (ψ → φ)))) → (ψ → (φ → (ψ → φ)))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (ψ → (φ → (ψ → φ))) |
6 | mercolem6 1507 | . 2 ⊢ ((ψ → (φ → (ψ → φ))) → (φ → (ψ → φ))) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ (φ → (ψ → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: re1tbw4 1513 |
Copyright terms: Public domain | W3C validator |