New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > merco2 | GIF version |
Description: A single axiom for
propositional calculus offered by Meredith.
This axiom has 19 symbols, sans auxiliaries. See notes in merco1 1478. (Contributed by Anthony Hart, 7-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco2 | ⊢ (((φ → ψ) → (( ⊥ → χ) → θ)) → ((θ → φ) → (τ → (η → φ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | falim 1328 | . . . . . 6 ⊢ ( ⊥ → χ) | |
2 | pm2.04 76 | . . . . . 6 ⊢ (((φ → ψ) → (( ⊥ → χ) → θ)) → (( ⊥ → χ) → ((φ → ψ) → θ))) | |
3 | 1, 2 | mpi 16 | . . . . 5 ⊢ (((φ → ψ) → (( ⊥ → χ) → θ)) → ((φ → ψ) → θ)) |
4 | jarl 155 | . . . . . 6 ⊢ (((φ → ψ) → θ) → (¬ φ → θ)) | |
5 | idd 21 | . . . . . 6 ⊢ (((φ → ψ) → θ) → (θ → θ)) | |
6 | 4, 5 | jad 154 | . . . . 5 ⊢ (((φ → ψ) → θ) → ((φ → θ) → θ)) |
7 | looinv 174 | . . . . 5 ⊢ (((φ → θ) → θ) → ((θ → φ) → φ)) | |
8 | 3, 6, 7 | 3syl 18 | . . . 4 ⊢ (((φ → ψ) → (( ⊥ → χ) → θ)) → ((θ → φ) → φ)) |
9 | 8 | a1dd 42 | . . 3 ⊢ (((φ → ψ) → (( ⊥ → χ) → θ)) → ((θ → φ) → (τ → φ))) |
10 | 9 | a1i 10 | . 2 ⊢ (η → (((φ → ψ) → (( ⊥ → χ) → θ)) → ((θ → φ) → (τ → φ)))) |
11 | 10 | com4l 78 | 1 ⊢ (((φ → ψ) → (( ⊥ → χ) → θ)) → ((θ → φ) → (τ → (η → φ)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: mercolem1 1502 mercolem2 1503 mercolem3 1504 mercolem4 1505 mercolem5 1506 mercolem6 1507 mercolem7 1508 mercolem8 1509 re1tbw4 1513 |
Copyright terms: Public domain | W3C validator |