NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simp1d GIF version

Theorem simp1d 967
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
3simp1d.1 (φ → (ψ χ θ))
Assertion
Ref Expression
simp1d (φψ)

Proof of Theorem simp1d
StepHypRef Expression
1 3simp1d.1 . 2 (φ → (ψ χ θ))
2 simp1 955 . 2 ((ψ χ θ) → ψ)
31, 2syl 15 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  simp1bi  970
  Copyright terms: Public domain W3C validator