![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > simp1bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) | |
2 | 1 | biimpi 186 | . 2 ⊢ (φ → (ψ ∧ χ ∧ θ)) |
3 | 2 | simp1d 967 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: sfintfin 4532 sfin111 4536 vfinspsslem1 4550 weds 5938 |
Copyright terms: Public domain | W3C validator |