NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simp1bi GIF version

Theorem simp1bi 970
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (φ ↔ (ψ χ θ))
Assertion
Ref Expression
simp1bi (φψ)

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (φ ↔ (ψ χ θ))
21biimpi 186 . 2 (φ → (ψ χ θ))
32simp1d 967 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  sfintfin  4533  sfin111  4537  vfinspsslem1  4551  weds  5939
  Copyright terms: Public domain W3C validator