| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simp1bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (φ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) | |
| 2 | 1 | biimpi 186 | . 2 ⊢ (φ → (ψ ∧ χ ∧ θ)) |
| 3 | 2 | simp1d 967 | 1 ⊢ (φ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: sfintfin 4533 sfin111 4537 vfinspsslem1 4551 weds 5939 |
| Copyright terms: Public domain | W3C validator |