NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simp2i GIF version

Theorem simp2i 965
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (φ ψ χ)
Assertion
Ref Expression
simp2i ψ

Proof of Theorem simp2i
StepHypRef Expression
1 3simp1i.1 . 2 (φ ψ χ)
2 simp2 956 . 2 ((φ ψ χ) → ψ)
31, 2ax-mp 5 1 ψ
Colors of variables: wff setvar class
Syntax hints:   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator