New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp2 | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
simp2 | ⊢ ((φ ∧ ψ ∧ χ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 952 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → (φ ∧ ψ)) | |
2 | 1 | simprd 449 | 1 ⊢ ((φ ∧ ψ ∧ χ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simpl2 959 simpr2 962 simp2i 965 simp2d 968 simp12 986 simp22 989 simp32 992 syld3an3 1227 opkthg 4132 nnsucelrlem3 4427 ltfintri 4467 ncfindi 4476 sfintfin 4533 vfintle 4547 phi11lem1 4596 fvopab4t 5386 xpassen 6058 nenpw1pwlem2 6086 ceclnn1 6190 spacssnc 6285 spaccl 6287 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |