NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl121anc GIF version

Theorem syl121anc 1187
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (φψ)
sylXanc.2 (φχ)
sylXanc.3 (φθ)
sylXanc.4 (φτ)
syl121anc.5 ((ψ (χ θ) τ) → η)
Assertion
Ref Expression
syl121anc (φη)

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2 (φψ)
2 sylXanc.2 . . 3 (φχ)
3 sylXanc.3 . . 3 (φθ)
42, 3jca 518 . 2 (φ → (χ θ))
5 sylXanc.4 . 2 (φτ)
6 syl121anc.5 . 2 ((ψ (χ θ) τ) → η)
71, 4, 5, 6syl3anc 1182 1 (φη)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  syl122anc  1191
  Copyright terms: Public domain W3C validator