New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl3anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (φ → ψ) |
sylXanc.2 | ⊢ (φ → χ) |
sylXanc.3 | ⊢ (φ → θ) |
syl111anc.4 | ⊢ ((ψ ∧ χ ∧ θ) → τ) |
Ref | Expression |
---|---|
syl3anc | ⊢ (φ → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . . 3 ⊢ (φ → ψ) | |
2 | sylXanc.2 | . . 3 ⊢ (φ → χ) | |
3 | sylXanc.3 | . . 3 ⊢ (φ → θ) | |
4 | 1, 2, 3 | 3jca 1132 | . 2 ⊢ (φ → (ψ ∧ χ ∧ θ)) |
5 | syl111anc.4 | . 2 ⊢ ((ψ ∧ χ ∧ θ) → τ) | |
6 | 4, 5 | syl 15 | 1 ⊢ (φ → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: syl112anc 1186 syl121anc 1187 syl211anc 1188 syl113anc 1194 syl131anc 1195 syl311anc 1196 syld3an3 1227 3jaod 1246 mpd3an23 1279 rspc3ev 2966 sbciedf 3082 pw1equn 4332 pw1eqadj 4333 findsd 4411 nnsucelr 4429 ltfintri 4467 lenltfin 4470 ncfindi 4476 nnpw1ex 4485 tfin11 4494 tfindi 4497 tfinltfinlem1 4501 nnadjoinpw 4522 sfin112 4530 sfindbl 4531 sfintfin 4533 tfinnn 4535 sfinltfin 4536 sfin111 4537 vfinncvntnn 4549 vfinspsslem1 4551 vfinncsp 4555 phi11lem1 4596 fvopab4t 5386 composevalg 5818 trd 5922 pmfun 6016 elmapi 6017 ncdisjun 6137 ce2le 6234 lemuc1 6254 lecadd2 6267 spacind 6288 nchoicelem4 6293 nchoicelem6 6295 nchoicelem19 6308 nchoice 6309 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |