NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl212anc GIF version

Theorem syl212anc 1192
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (φψ)
sylXanc.2 (φχ)
sylXanc.3 (φθ)
sylXanc.4 (φτ)
sylXanc.5 (φη)
syl212anc.6 (((ψ χ) θ (τ η)) → ζ)
Assertion
Ref Expression
syl212anc (φζ)

Proof of Theorem syl212anc
StepHypRef Expression
1 sylXanc.1 . 2 (φψ)
2 sylXanc.2 . 2 (φχ)
3 sylXanc.3 . 2 (φθ)
4 sylXanc.4 . . 3 (φτ)
5 sylXanc.5 . . 3 (φη)
64, 5jca 518 . 2 (φ → (τ η))
7 syl212anc.6 . 2 (((ψ χ) θ (τ η)) → ζ)
81, 2, 3, 6, 7syl211anc 1188 1 (φζ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  rmob  3135
  Copyright terms: Public domain W3C validator