Proof of Theorem rmob
Step | Hyp | Ref
| Expression |
1 | | df-rmo 2622 |
. 2
⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) |
2 | | simprl 732 |
. . . 4
⊢ ((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) → B ∈ A) |
3 | | eleq1 2413 |
. . . 4
⊢ (B = C →
(B ∈
A ↔ C ∈ A)) |
4 | 2, 3 | syl5ibcom 211 |
. . 3
⊢ ((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) → (B = C →
C ∈
A)) |
5 | | simpl 443 |
. . . 4
⊢ ((C ∈ A ∧ χ) → C ∈ A) |
6 | 5 | a1i 10 |
. . 3
⊢ ((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) → ((C ∈ A ∧ χ) → C ∈ A)) |
7 | | simplrl 736 |
. . . . 5
⊢ (((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) ∧
C ∈
A) → B ∈ A) |
8 | | simpr 447 |
. . . . 5
⊢ (((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) ∧
C ∈
A) → C ∈ A) |
9 | | simpll 730 |
. . . . 5
⊢ (((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) ∧
C ∈
A) → ∃*x(x ∈ A ∧ φ)) |
10 | | simplrr 737 |
. . . . 5
⊢ (((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) ∧
C ∈
A) → ψ) |
11 | | eleq1 2413 |
. . . . . . 7
⊢ (x = B →
(x ∈
A ↔ B ∈ A)) |
12 | | rmoi.b |
. . . . . . 7
⊢ (x = B →
(φ ↔ ψ)) |
13 | 11, 12 | anbi12d 691 |
. . . . . 6
⊢ (x = B →
((x ∈
A ∧ φ) ↔ (B ∈ A ∧ ψ))) |
14 | | eleq1 2413 |
. . . . . . 7
⊢ (x = C →
(x ∈
A ↔ C ∈ A)) |
15 | | rmoi.c |
. . . . . . 7
⊢ (x = C →
(φ ↔ χ)) |
16 | 14, 15 | anbi12d 691 |
. . . . . 6
⊢ (x = C →
((x ∈
A ∧ φ) ↔ (C ∈ A ∧ χ))) |
17 | 13, 16 | mob 3018 |
. . . . 5
⊢ (((B ∈ A ∧ C ∈ A) ∧ ∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) → (B = C ↔
(C ∈
A ∧ χ))) |
18 | 7, 8, 9, 7, 10, 17 | syl212anc 1192 |
. . . 4
⊢ (((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) ∧
C ∈
A) → (B = C ↔
(C ∈
A ∧ χ))) |
19 | 18 | ex 423 |
. . 3
⊢ ((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) → (C ∈ A → (B =
C ↔ (C ∈ A ∧ χ)))) |
20 | 4, 6, 19 | pm5.21ndd 343 |
. 2
⊢ ((∃*x(x ∈ A ∧ φ) ∧
(B ∈
A ∧ ψ)) → (B = C ↔
(C ∈
A ∧ χ))) |
21 | 1, 20 | sylanb 458 |
1
⊢ ((∃*x ∈ A φ ∧
(B ∈
A ∧ ψ)) → (B = C ↔
(C ∈
A ∧ χ))) |