![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sylan9 | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (φ → (ψ → χ)) |
sylan9.2 | ⊢ (θ → (χ → τ)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((φ ∧ θ) → (ψ → τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
2 | sylan9.2 | . . 3 ⊢ (θ → (χ → τ)) | |
3 | 1, 2 | syl9 66 | . 2 ⊢ (φ → (θ → (ψ → τ))) |
4 | 3 | imp 418 | 1 ⊢ ((φ ∧ θ) → (ψ → τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sbequi 2059 sbal1 2126 rspc2 2960 rspc3v 2964 copsexg 4607 chfnrn 5399 ffnfv 5427 f1elima 5474 isotr 5495 |
Copyright terms: Public domain | W3C validator |