| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sylan9 | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (φ → (ψ → χ)) |
| sylan9.2 | ⊢ (θ → (χ → τ)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((φ ∧ θ) → (ψ → τ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
| 2 | sylan9.2 | . . 3 ⊢ (θ → (χ → τ)) | |
| 3 | 1, 2 | syl9 66 | . 2 ⊢ (φ → (θ → (ψ → τ))) |
| 4 | 3 | imp 418 | 1 ⊢ ((φ ∧ θ) → (ψ → τ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: sbequi 2059 sbal1 2126 rspc2 2961 rspc3v 2965 copsexg 4608 chfnrn 5400 ffnfv 5428 f1elima 5475 isotr 5496 |
| Copyright terms: Public domain | W3C validator |