NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylanr2 GIF version

Theorem sylanr2 634
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr2.1 (φθ)
sylanr2.2 ((ψ (χ θ)) → τ)
Assertion
Ref Expression
sylanr2 ((ψ (χ φ)) → τ)

Proof of Theorem sylanr2
StepHypRef Expression
1 sylanr2.1 . . 3 (φθ)
21anim2i 552 . 2 ((χ φ) → (χ θ))
3 sylanr2.2 . 2 ((ψ (χ θ)) → τ)
42, 3sylan2 460 1 ((ψ (χ φ)) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  adantrrl  704  adantrrr  705
  Copyright terms: Public domain W3C validator