New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
sylan2.1 | ⊢ (φ → χ) |
sylan2.2 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylan2 | ⊢ ((ψ ∧ φ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2.1 | . . 3 ⊢ (φ → χ) | |
2 | 1 | adantl 452 | . 2 ⊢ ((ψ ∧ φ) → χ) |
3 | sylan2.2 | . 2 ⊢ ((ψ ∧ χ) → θ) | |
4 | 2, 3 | syldan 456 | 1 ⊢ ((ψ ∧ φ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylan2b 461 sylan2br 462 syl2an 463 sylanr1 633 sylanr2 634 mpanr2 665 adantrl 696 adantrr 697 ancom2s 777 3adantr1 1114 3adantr2 1115 3adantr3 1116 syl3anr1 1234 syl3anr3 1236 ax11indalem 2197 ax11inda2ALT 2198 elabgt 2983 sbciegft 3077 csbtt 3149 csbnestgf 3185 difexg 4103 imakexg 4300 dfpw12 4302 pw1eqadj 4333 elsuci 4415 nnsucelr 4429 ltfintr 4460 ltfintri 4467 ncfinlower 4484 tfinpw1 4495 ncfintfin 4496 eventfin 4518 oddtfin 4519 sfindbl 4531 vfinspnn 4542 phi11lem1 4596 copsex2t 4609 resexg 5117 funimass2 5171 dff1o2 5292 resdif 5307 funbrfv 5357 dfimafn 5367 funimass4 5369 eqfnfv2 5394 fvimacnvi 5403 ffvresb 5432 funfvima3 5462 funiunfv 5468 f1elima 5475 isomin 5497 mpt2eq12 5663 fvmptss 5706 ecelqsg 5980 peano4nc 6151 eqtc 6162 dflec3 6222 letc 6232 nclenn 6250 ncslesuc 6268 nmembers1lem3 6271 nchoicelem3 6292 nchoicelem9 6298 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |