New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylanr1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr1.1 | ⊢ (φ → χ) |
sylanr1.2 | ⊢ ((ψ ∧ (χ ∧ θ)) → τ) |
Ref | Expression |
---|---|
sylanr1 | ⊢ ((ψ ∧ (φ ∧ θ)) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr1.1 | . . 3 ⊢ (φ → χ) | |
2 | 1 | anim1i 551 | . 2 ⊢ ((φ ∧ θ) → (χ ∧ θ)) |
3 | sylanr1.2 | . 2 ⊢ ((ψ ∧ (χ ∧ θ)) → τ) | |
4 | 2, 3 | sylan2 460 | 1 ⊢ ((ψ ∧ (φ ∧ θ)) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: adantrll 702 adantrlr 703 |
Copyright terms: Public domain | W3C validator |