Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > 2vwomr2 | GIF version |
Description: 2-variable WOML rule. (Contributed by NM, 13-Nov-1998.) |
Ref | Expression |
---|---|
2vwomr2.1 | (b ∪ (a⊥ ∩ b⊥ )) = 1 |
Ref | Expression |
---|---|
2vwomr2 | (a⊥ ∪ (a ∩ b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . . . 4 (a ∩ b) = (b ∩ a) | |
2 | ax-a1 30 | . . . . 5 b = b⊥ ⊥ | |
3 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
4 | 2, 3 | 2an 79 | . . . 4 (b ∩ a) = (b⊥ ⊥ ∩ a⊥ ⊥ ) |
5 | 1, 4 | ax-r2 36 | . . 3 (a ∩ b) = (b⊥ ⊥ ∩ a⊥ ⊥ ) |
6 | 5 | lor 70 | . 2 (a⊥ ∪ (a ∩ b)) = (a⊥ ∪ (b⊥ ⊥ ∩ a⊥ ⊥ )) |
7 | ancom 74 | . . . . . 6 (a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) | |
8 | 2, 7 | 2or 72 | . . . . 5 (b ∪ (a⊥ ∩ b⊥ )) = (b⊥ ⊥ ∪ (b⊥ ∩ a⊥ )) |
9 | 8 | ax-r1 35 | . . . 4 (b⊥ ⊥ ∪ (b⊥ ∩ a⊥ )) = (b ∪ (a⊥ ∩ b⊥ )) |
10 | 2vwomr2.1 | . . . 4 (b ∪ (a⊥ ∩ b⊥ )) = 1 | |
11 | 9, 10 | ax-r2 36 | . . 3 (b⊥ ⊥ ∪ (b⊥ ∩ a⊥ )) = 1 |
12 | 11 | ax-wom 361 | . 2 (a⊥ ∪ (b⊥ ⊥ ∩ a⊥ ⊥ )) = 1 |
13 | 6, 12 | ax-r2 36 | 1 (a⊥ ∪ (a ∩ b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: 2vwomr2a 364 2vwomlem 365 |
Copyright terms: Public domain | W3C validator |