Proof of Theorem 2vwomlem
Step | Hyp | Ref
| Expression |
1 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
2 | | df-f 42 |
. . . . 5
0 = 1⊥ |
3 | | anor2 89 |
. . . . . . 7
(a⊥ ∩ (a ∪ b)) =
(a ∪ (a ∪ b)⊥
)⊥ |
4 | 3 | ax-r1 35 |
. . . . . 6
(a ∪ (a ∪ b)⊥ )⊥ = (a⊥ ∩ (a ∪ b)) |
5 | | anor3 90 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
6 | 5 | ax-r1 35 |
. . . . . . . . . 10
(a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
7 | | ancom 74 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
8 | 6, 7 | ax-r2 36 |
. . . . . . . . 9
(a ∪ b)⊥ = (b⊥ ∩ a⊥ ) |
9 | 8 | lor 70 |
. . . . . . . 8
(a ∪ (a ∪ b)⊥ ) = (a ∪ (b⊥ ∩ a⊥ )) |
10 | | df-i2 45 |
. . . . . . . . 9
(b →2 a) = (a ∪
(b⊥ ∩ a⊥ )) |
11 | 10 | ax-r1 35 |
. . . . . . . 8
(a ∪ (b⊥ ∩ a⊥ )) = (b →2 a) |
12 | | 2vwomlem.2 |
. . . . . . . 8
(b →2 a) = 1 |
13 | 9, 11, 12 | 3tr 65 |
. . . . . . 7
(a ∪ (a ∪ b)⊥ ) = 1 |
14 | 13 | ax-r4 37 |
. . . . . 6
(a ∪ (a ∪ b)⊥ )⊥ =
1⊥ |
15 | | anabs 121 |
. . . . . . . . 9
(a⊥ ∩ (a⊥ ∪ b⊥ )) = a⊥ |
16 | 15 | ax-r1 35 |
. . . . . . . 8
a⊥ = (a⊥ ∩ (a⊥ ∪ b⊥ )) |
17 | 16 | ran 78 |
. . . . . . 7
(a⊥ ∩ (a ∪ b)) =
((a⊥ ∩ (a⊥ ∪ b⊥ )) ∩ (a ∪ b)) |
18 | | anass 76 |
. . . . . . 7
((a⊥ ∩
(a⊥ ∪ b⊥ )) ∩ (a ∪ b)) =
(a⊥ ∩ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b))) |
19 | | oran3 93 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
20 | | oran 87 |
. . . . . . . . . 10
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
21 | 19, 20 | 2an 79 |
. . . . . . . . 9
((a⊥ ∪ b⊥ ) ∩ (a ∪ b)) =
((a ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥
) |
22 | | anor3 90 |
. . . . . . . . 9
((a ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) =
((a ∩ b) ∪ (a⊥ ∩ b⊥
))⊥ |
23 | 21, 22 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∩ (a ∪ b)) =
((a ∩ b) ∪ (a⊥ ∩ b⊥
))⊥ |
24 | 23 | lan 77 |
. . . . . . 7
(a⊥ ∩
((a⊥ ∪ b⊥ ) ∩ (a ∪ b))) =
(a⊥ ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))⊥
) |
25 | 17, 18, 24 | 3tr 65 |
. . . . . 6
(a⊥ ∩ (a ∪ b)) =
(a⊥ ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))⊥
) |
26 | 4, 14, 25 | 3tr2 64 |
. . . . 5
1⊥ = (a⊥ ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))⊥
) |
27 | 2, 26 | ax-r2 36 |
. . . 4
0 = (a⊥ ∩
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥
) |
28 | 27 | lor 70 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 0) = (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))⊥
)) |
29 | | or0 102 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 0) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
30 | | le1 146 |
. . . . 5
(a⊥ ∪ (a ∩ ((a
∩ b) ∪ (a⊥ ∩ b⊥ )))) ≤ 1 |
31 | | df-i2 45 |
. . . . . . . . . 10
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
32 | 31 | ax-r1 35 |
. . . . . . . . 9
(b ∪ (a⊥ ∩ b⊥ )) = (a →2 b) |
33 | | 2vwomlem.1 |
. . . . . . . . 9
(a →2 b) = 1 |
34 | 32, 33 | ax-r2 36 |
. . . . . . . 8
(b ∪ (a⊥ ∩ b⊥ )) = 1 |
35 | 34 | 2vwomr2 362 |
. . . . . . 7
(a⊥ ∪ (a ∩ b)) =
1 |
36 | 35 | ax-r1 35 |
. . . . . 6
1 = (a⊥ ∪
(a ∩ b)) |
37 | | lea 160 |
. . . . . . . 8
(a ∩ b) ≤ a |
38 | | leo 158 |
. . . . . . . 8
(a ∩ b) ≤ ((a
∩ b) ∪ (a⊥ ∩ b⊥ )) |
39 | 37, 38 | ler2an 173 |
. . . . . . 7
(a ∩ b) ≤ (a ∩
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
40 | 39 | lelor 166 |
. . . . . 6
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ (a ∩ ((a
∩ b) ∪ (a⊥ ∩ b⊥ )))) |
41 | 36, 40 | bltr 138 |
. . . . 5
1 ≤ (a⊥ ∪
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ )))) |
42 | 30, 41 | lebi 145 |
. . . 4
(a⊥ ∪ (a ∩ ((a
∩ b) ∪ (a⊥ ∩ b⊥ )))) = 1 |
43 | 42 | ax-wom 361 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))⊥ )) =
1 |
44 | 28, 29, 43 | 3tr2 64 |
. 2
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = 1 |
45 | 1, 44 | ax-r2 36 |
1
(a ≡ b) = 1 |