Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > 2an | GIF version |
Description: Conjoin both sides of hypotheses. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
2an.1 | a = b |
2an.2 | c = d |
Ref | Expression |
---|---|
2an | (a ∩ c) = (b ∩ d) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2an.2 | . . 3 c = d | |
2 | 1 | lan 77 | . 2 (a ∩ c) = (a ∩ d) |
3 | 2an.1 | . . 3 a = b | |
4 | 3 | ran 78 | . 2 (a ∩ d) = (b ∩ d) |
5 | 2, 4 | ax-r2 36 | 1 (a ∩ c) = (b ∩ d) |
Copyright terms: Public domain | W3C validator |