Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ancom | GIF version |
Description: Commutative law. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
ancom | (a ∩ b) = (b ∩ a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . 3 (a⊥ ∪ b⊥ ) = (b⊥ ∪ a⊥ ) | |
2 | 1 | ax-r4 37 | . 2 (a⊥ ∪ b⊥ )⊥ = (b⊥ ∪ a⊥ )⊥ |
3 | df-a 40 | . 2 (a ∩ b) = (a⊥ ∪ b⊥ )⊥ | |
4 | df-a 40 | . 2 (b ∩ a) = (b⊥ ∪ a⊥ )⊥ | |
5 | 2, 3, 4 | 3tr1 63 | 1 (a ∩ b) = (b ∩ a) |
Copyright terms: Public domain | W3C validator |