| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ancom | GIF version | ||
| Description: Commutative law. (Contributed by NM, 10-Aug-1997.) |
| Ref | Expression |
|---|---|
| ancom | (a ∩ b) = (b ∩ a) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 | . . 3 (a⊥ ∪ b⊥ ) = (b⊥ ∪ a⊥ ) | |
| 2 | 1 | ax-r4 37 | . 2 (a⊥ ∪ b⊥ )⊥ = (b⊥ ∪ a⊥ )⊥ |
| 3 | df-a 40 | . 2 (a ∩ b) = (a⊥ ∪ b⊥ )⊥ | |
| 4 | df-a 40 | . 2 (b ∩ a) = (b⊥ ∪ a⊥ )⊥ | |
| 5 | 2, 3, 4 | 3tr1 63 | 1 (a ∩ b) = (b ∩ a) |
| Copyright terms: Public domain | W3C validator |