Proof of Theorem dp15lema
Step | Hyp | Ref
| Expression |
1 | | dp15lema.3 |
. . . . 5
e = (b0 ∩ (a0 ∪ p0)) |
2 | | dp15lema.2 |
. . . . . . 7
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
3 | 2 | lor 70 |
. . . . . 6
(a0 ∪ p0) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
4 | 3 | lan 77 |
. . . . 5
(b0 ∩ (a0 ∪ p0)) = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
5 | 1, 4 | tr 62 |
. . . 4
e = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
6 | 5 | lor 70 |
. . 3
(a0 ∪ e) = (a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) |
7 | 6 | ran 78 |
. 2
((a0 ∪ e) ∩ (a1 ∪ b1)) = ((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) |
8 | | le1 146 |
. . . . . 6
b0 ≤
1 |
9 | 8 | leran 153 |
. . . . 5
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) ≤ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
10 | 9 | lelor 166 |
. . . 4
(a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ≤ (a0 ∪ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) |
11 | 10 | leran 153 |
. . 3
((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) |
12 | | an1r 107 |
. . . . . . . . 9
(1 ∩ (a0 ∪
((a1 ∪ b1) ∩ (a2 ∪ b2)))) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
13 | 12 | lor 70 |
. . . . . . . 8
(a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) = (a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
14 | | orass 75 |
. . . . . . . . 9
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
15 | 14 | cm 61 |
. . . . . . . 8
(a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) = ((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
16 | | oridm 110 |
. . . . . . . . . 10
(a0 ∪ a0) = a0 |
17 | 16 | ror 71 |
. . . . . . . . 9
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
18 | | orcom 73 |
. . . . . . . . 9
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
19 | 17, 18 | tr 62 |
. . . . . . . 8
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
20 | 13, 15, 19 | 3tr 65 |
. . . . . . 7
(a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
21 | 20 | ran 78 |
. . . . . 6
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) = ((((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) ∩ (a1 ∪ b1)) |
22 | | lea 160 |
. . . . . . 7
((a1 ∪ b1) ∩ (a2 ∪ b2)) ≤ (a1 ∪ b1) |
23 | 22 | mlduali 1128 |
. . . . . 6
((((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) |
24 | 21, 23 | tr 62 |
. . . . 5
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) |
25 | | lear 161 |
. . . . . 6
((a1 ∪ b1) ∩ (a2 ∪ b2)) ≤ (a2 ∪ b2) |
26 | 25 | leror 152 |
. . . . 5
(((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) |
27 | 24, 26 | bltr 138 |
. . . 4
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ ((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) |
28 | | or32 82 |
. . . . 5
((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) = ((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) |
29 | | dp15lema.1 |
. . . . . . 7
d = (a2 ∪ (a0 ∩ (a1 ∪ b1))) |
30 | 29 | ror 71 |
. . . . . 6
(d ∪ b2) = ((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) |
31 | 30 | cm 61 |
. . . . 5
((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) = (d ∪ b2) |
32 | 28, 31 | tr 62 |
. . . 4
((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) = (d ∪ b2) |
33 | 27, 32 | lbtr 139 |
. . 3
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
34 | 11, 33 | letr 137 |
. 2
((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
35 | 7, 34 | bltr 138 |
1
((a0 ∪ e) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |