Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp15lemb | GIF version |
Description: Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM, 1-Apr-2012.) |
Ref | Expression |
---|---|
dp15lema.1 | d = (a2 ∪ (a0 ∩ (a1 ∪ b1))) |
dp15lema.2 | p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
dp15lema.3 | e = (b0 ∩ (a0 ∪ p0)) |
Ref | Expression |
---|---|
dp15lemb | ((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ d) ∩ (e ∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp15lema.1 | . . 3 d = (a2 ∪ (a0 ∩ (a1 ∪ b1))) | |
2 | dp15lema.2 | . . 3 p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) | |
3 | dp15lema.3 | . . 3 e = (b0 ∩ (a0 ∪ p0)) | |
4 | 1, 2, 3 | dp15lema 1154 | . 2 ((a0 ∪ e) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
5 | 4 | ax-arg 1153 | 1 ((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ d) ∩ (e ∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 ax-arg 1153 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: dp15lemc 1156 |
Copyright terms: Public domain | W3C validator |