Proof of Theorem xdp15
Step | Hyp | Ref
| Expression |
1 | | xdp15.e |
. . . . . . . . . . 11
e = (b0 ∩ (a0 ∪ p0)) |
2 | | xdp15.p0 |
. . . . . . . . . . . . 13
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
3 | 2 | lor 70 |
. . . . . . . . . . . 12
(a0 ∪ p0) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
4 | 3 | lan 77 |
. . . . . . . . . . 11
(b0 ∩ (a0 ∪ p0)) = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
5 | 1, 4 | tr 62 |
. . . . . . . . . 10
e = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
6 | 5 | lor 70 |
. . . . . . . . 9
(a0 ∪ e) = (a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) |
7 | 6 | ran 78 |
. . . . . . . 8
((a0 ∪ e) ∩ (a1 ∪ b1)) = ((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) |
8 | | le1 146 |
. . . . . . . . . . . 12
b0 ≤
1 |
9 | 8 | leran 153 |
. . . . . . . . . . 11
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) ≤ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
10 | 9 | lelor 166 |
. . . . . . . . . 10
(a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ≤ (a0 ∪ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) |
11 | 10 | leran 153 |
. . . . . . . . 9
((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) |
12 | | an1r 107 |
. . . . . . . . . . . . . . 15
(1 ∩ (a0 ∪
((a1 ∪ b1) ∩ (a2 ∪ b2)))) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
13 | 12 | lor 70 |
. . . . . . . . . . . . . 14
(a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) = (a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
14 | | orass 75 |
. . . . . . . . . . . . . . 15
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
15 | 14 | cm 61 |
. . . . . . . . . . . . . 14
(a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) = ((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
16 | | oridm 110 |
. . . . . . . . . . . . . . . 16
(a0 ∪ a0) = a0 |
17 | 16 | ror 71 |
. . . . . . . . . . . . . . 15
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
18 | | orcom 73 |
. . . . . . . . . . . . . . 15
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
19 | 17, 18 | tr 62 |
. . . . . . . . . . . . . 14
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
20 | 13, 15, 19 | 3tr 65 |
. . . . . . . . . . . . 13
(a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
21 | 20 | ran 78 |
. . . . . . . . . . . 12
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) = ((((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) ∩ (a1 ∪ b1)) |
22 | | lea 160 |
. . . . . . . . . . . . 13
((a1 ∪ b1) ∩ (a2 ∪ b2)) ≤ (a1 ∪ b1) |
23 | 22 | mlduali 1128 |
. . . . . . . . . . . 12
((((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) |
24 | 21, 23 | tr 62 |
. . . . . . . . . . 11
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) |
25 | | lear 161 |
. . . . . . . . . . . 12
((a1 ∪ b1) ∩ (a2 ∪ b2)) ≤ (a2 ∪ b2) |
26 | 25 | leror 152 |
. . . . . . . . . . 11
(((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) |
27 | 24, 26 | bltr 138 |
. . . . . . . . . 10
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ ((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) |
28 | | or32 82 |
. . . . . . . . . . 11
((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) = ((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) |
29 | | xdp15.d |
. . . . . . . . . . . . 13
d = (a2 ∪ (a0 ∩ (a1 ∪ b1))) |
30 | 29 | ror 71 |
. . . . . . . . . . . 12
(d ∪ b2) = ((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) |
31 | 30 | cm 61 |
. . . . . . . . . . 11
((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) = (d ∪ b2) |
32 | 28, 31 | tr 62 |
. . . . . . . . . 10
((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) = (d ∪ b2) |
33 | 27, 32 | lbtr 139 |
. . . . . . . . 9
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
34 | 11, 33 | letr 137 |
. . . . . . . 8
((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
35 | 7, 34 | bltr 138 |
. . . . . . 7
((a0 ∪ e) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
36 | 35 | ax-arg 1153 |
. . . . . 6
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
37 | 1 | ror 71 |
. . . . . . 7
(e ∪ b1) = ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
38 | 37 | lan 77 |
. . . . . 6
((a0 ∪ a1) ∩ (e ∪ b1)) = ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
39 | 29 | lor 70 |
. . . . . . . 8
(a0 ∪ d) = (a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
40 | 1 | ror 71 |
. . . . . . . 8
(e ∪ b2) = ((b0 ∩ (a0 ∪ p0)) ∪ b2) |
41 | 39, 40 | 2an 79 |
. . . . . . 7
((a0 ∪ d) ∩ (e
∪ b2)) = ((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) |
42 | 29 | lor 70 |
. . . . . . . 8
(a1 ∪ d) = (a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
43 | 42 | ran 78 |
. . . . . . 7
((a1 ∪ d) ∩ (b1 ∪ b2)) = ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) |
44 | 41, 43 | 2or 72 |
. . . . . 6
(((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) = (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) |
45 | 36, 38, 44 | le3tr2 141 |
. . . . 5
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) |
46 | | or12 80 |
. . . . . . . 8
(a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) = (a2 ∪ (a0 ∪ (a0 ∩ (a1 ∪ b1)))) |
47 | | orabs 120 |
. . . . . . . . 9
(a0 ∪ (a0 ∩ (a1 ∪ b1))) = a0 |
48 | 47 | lor 70 |
. . . . . . . 8
(a2 ∪ (a0 ∪ (a0 ∩ (a1 ∪ b1)))) = (a2 ∪ a0) |
49 | | orcom 73 |
. . . . . . . 8
(a2 ∪ a0) = (a0 ∪ a2) |
50 | 46, 48, 49 | 3tr 65 |
. . . . . . 7
(a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) = (a0 ∪ a2) |
51 | 50 | ran 78 |
. . . . . 6
((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) = ((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) |
52 | | orass 75 |
. . . . . . . 8
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = (a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
53 | 52 | ran 78 |
. . . . . . 7
(((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) = ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) |
54 | 53 | cm 61 |
. . . . . 6
((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) = (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) |
55 | 51, 54 | 2or 72 |
. . . . 5
(((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) = (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) |
56 | 45, 55 | lbtr 139 |
. . . 4
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) |
57 | | ax-a2 31 |
. . . . . . . . . 10
(a1 ∪ a2) = (a2 ∪ a1) |
58 | | ax-a2 31 |
. . . . . . . . . . 11
(a1 ∪ b1) = (b1 ∪ a1) |
59 | 58 | lan 77 |
. . . . . . . . . 10
(a0 ∩ (a1 ∪ b1)) = (a0 ∩ (b1 ∪ a1)) |
60 | 57, 59 | 2or 72 |
. . . . . . . . 9
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = ((a2 ∪ a1) ∪ (a0 ∩ (b1 ∪ a1))) |
61 | | orass 75 |
. . . . . . . . 9
((a2 ∪ a1) ∪ (a0 ∩ (b1 ∪ a1))) = (a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) |
62 | 60, 61 | tr 62 |
. . . . . . . 8
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = (a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) |
63 | | ml3le 1129 |
. . . . . . . . 9
(a1 ∪ (a0 ∩ (b1 ∪ a1))) ≤ (a1 ∪ (b1 ∩ (a0 ∪ a1))) |
64 | 63 | lelor 166 |
. . . . . . . 8
(a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) ≤ (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
65 | 62, 64 | bltr 138 |
. . . . . . 7
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ≤ (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
66 | | orass 75 |
. . . . . . . . 9
((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) = (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
67 | 66 | cm 61 |
. . . . . . . 8
(a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) |
68 | | ax-a2 31 |
. . . . . . . . 9
(a2 ∪ a1) = (a1 ∪ a2) |
69 | 68 | ror 71 |
. . . . . . . 8
((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) = ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
70 | 67, 69 | tr 62 |
. . . . . . 7
(a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
71 | 65, 70 | lbtr 139 |
. . . . . 6
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
72 | 71 | leran 153 |
. . . . 5
(((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) ≤ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) |
73 | 72 | lelor 166 |
. . . 4
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) |
74 | 56, 73 | letr 137 |
. . 3
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) |
75 | | lea 160 |
. . . . . . 7
(b0 ∩ (a0 ∪ p0)) ≤ b0 |
76 | 75 | leror 152 |
. . . . . 6
((b0 ∩ (a0 ∪ p0)) ∪ b2) ≤ (b0 ∪ b2) |
77 | 76 | lelan 167 |
. . . . 5
((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
78 | | leao1 162 |
. . . . . . . 8
(b1 ∩ (a0 ∪ a1)) ≤ (b1 ∪ b2) |
79 | 78 | mldual2i 1127 |
. . . . . . 7
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) |
80 | | ancom 74 |
. . . . . . 7
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) |
81 | | ancom 74 |
. . . . . . . 8
((b1 ∪ b2) ∩ (a1 ∪ a2)) = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
82 | 81 | ror 71 |
. . . . . . 7
(((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
83 | 79, 80, 82 | 3tr2 64 |
. . . . . 6
(((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
84 | 83 | bile 142 |
. . . . 5
(((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
85 | 77, 84 | le2or 168 |
. . . 4
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
86 | | or12 80 |
. . . 4
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
87 | 85, 86 | lbtr 139 |
. . 3
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
88 | 74, 87 | letr 137 |
. 2
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
89 | | xdp15.c0 |
. . . . 5
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
90 | | xdp15.c1 |
. . . . . 6
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
91 | 90 | ror 71 |
. . . . 5
(c1 ∪ (b1 ∩ (a0 ∪ a1))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
92 | 89, 91 | 2or 72 |
. . . 4
(c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
93 | 92 | cm 61 |
. . 3
(((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) |
94 | | orass 75 |
. . . 4
((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) = (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) |
95 | 94 | cm 61 |
. . 3
(c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
96 | 93, 95 | tr 62 |
. 2
(((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
97 | 88, 96 | lbtr 139 |
1
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |