Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wql1lem | GIF version |
Description: Classical implication inferred from Sakaki implication. (Contributed by NM, 5-Dec-1998.) |
Ref | Expression |
---|---|
wql1lem.1 | (a →1 b) = 1 |
Ref | Expression |
---|---|
wql1lem | (a⊥ ∪ b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le1 146 | . 2 (a⊥ ∪ b) ≤ 1 | |
2 | wql1lem.1 | . . . 4 (a →1 b) = 1 | |
3 | 2 | ax-r1 35 | . . 3 1 = (a →1 b) |
4 | df-i1 44 | . . . 4 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
5 | lear 161 | . . . . 5 (a ∩ b) ≤ b | |
6 | 5 | lelor 166 | . . . 4 (a⊥ ∪ (a ∩ b)) ≤ (a⊥ ∪ b) |
7 | 4, 6 | bltr 138 | . . 3 (a →1 b) ≤ (a⊥ ∪ b) |
8 | 3, 7 | bltr 138 | . 2 1 ≤ (a⊥ ∪ b) |
9 | 1, 8 | lebi 145 | 1 (a⊥ ∪ b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 |
This theorem is referenced by: wql1 293 wdwom 1106 |
Copyright terms: Public domain | W3C validator |