Proof of Theorem cmtr1com
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . . . . 6
(a ∩ b) ≤ a |
2 | | lea 160 |
. . . . . 6
(a ∩ b⊥ ) ≤ a |
3 | 1, 2 | lel2or 170 |
. . . . 5
((a ∩ b) ∪ (a
∩ b⊥ )) ≤ a |
4 | 3 | df-le2 131 |
. . . 4
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a) = a |
5 | | le1 146 |
. . . . 5
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) ≤
1 |
6 | | df-cmtr 134 |
. . . . . . 7
C (a, b) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
7 | | cmtr1com.1 |
. . . . . . 7
C (a, b) = 1 |
8 | | ax-a2 31 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
9 | 6, 7, 8 | 3tr2 64 |
. . . . . 6
1 = (((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
10 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ b) ≤ a⊥ |
11 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) ≤ a⊥ |
12 | 10, 11 | lel2or 170 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
13 | 12 | leror 152 |
. . . . . 6
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) ≤ (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
14 | 9, 13 | bltr 138 |
. . . . 5
1 ≤ (a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥
))) |
15 | 5, 14 | lebi 145 |
. . . 4
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) =
1 |
16 | 4, 15 | lem3.1 443 |
. . 3
((a ∩ b) ∪ (a
∩ b⊥ )) = a |
17 | 16 | ax-r1 35 |
. 2
a = ((a ∩ b) ∪
(a ∩ b⊥ )) |
18 | 17 | df-c1 132 |
1
a C b |