Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comcmtr1 | GIF version |
Description: Commutation implies commutator equal to 1. Theorem 2.11 of Beran, p. 86. (Contributed by NM, 24-Jan-1999.) |
Ref | Expression |
---|---|
comcmtr1.1 | a C b |
Ref | Expression |
---|---|
comcmtr1 | C (a, b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comcmtr1.1 | . . . . 5 a C b | |
2 | 1 | df-c2 133 | . . . 4 a = ((a ∩ b) ∪ (a ∩ b⊥ )) |
3 | 1 | comcom3 454 | . . . . 5 a⊥ C b |
4 | 3 | df-c2 133 | . . . 4 a⊥ = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
5 | 2, 4 | 2or 72 | . . 3 (a ∪ a⊥ ) = (((a ∩ b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
6 | 5 | ax-r1 35 | . 2 (((a ∩ b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ a⊥ ) |
7 | df-cmtr 134 | . 2 C (a, b) = (((a ∩ b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) | |
8 | df-t 41 | . 2 1 = (a ∪ a⊥ ) | |
9 | 6, 7, 8 | 3tr1 63 | 1 C (a, b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 C wcmtr 29 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 df-cmtr 134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |