Theorem List for Quantum Logic Explorer - 401-500 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | wbile 401 |
Biconditional to l.e. (Contributed by NM, 13-Oct-1997.)
|
(a ≡ b) =
1 ⇒ (a ≤2 b) = 1 |
|
Theorem | wlebi 402 |
L.e. to biconditional. (Contributed by NM, 13-Oct-1997.)
|
(a ≤2 b) = 1
& (b
≤2 a) =
1 ⇒ (a ≡ b) =
1 |
|
Theorem | wle2or 403 |
Disjunction of 2 l.e.'s. (Contributed by NM, 13-Oct-1997.)
|
(a ≤2 b) = 1
& (c
≤2 d) =
1 ⇒ ((a ∪ c)
≤2 (b ∪ d)) = 1 |
|
Theorem | wle2an 404 |
Conjunction of 2 l.e.'s. (Contributed by NM, 13-Oct-1997.)
|
(a ≤2 b) = 1
& (c
≤2 d) =
1 ⇒ ((a ∩ c)
≤2 (b ∩ d)) = 1 |
|
Theorem | wledi 405 |
Half of distributive law. (Contributed by NM, 13-Oct-1997.)
|
(((a ∩ b)
∪ (a ∩ c)) ≤2 (a ∩ (b
∪ c))) = 1 |
|
Theorem | wledio 406 |
Half of distributive law. (Contributed by NM, 13-Oct-1997.)
|
((a ∪ (b
∩ c)) ≤2 ((a ∪ b)
∩ (a ∪ c))) = 1 |
|
Theorem | wcom0 407 |
Commutation with 0. Kalmbach 83 p. 20. (Contributed by NM,
13-Oct-1997.)
|
C (a, 0) = 1 |
|
Theorem | wcom1 408 |
Commutation with 1. Kalmbach 83 p. 20. (Contributed by NM,
13-Oct-1997.)
|
C (1, a) = 1 |
|
Theorem | wlecom 409 |
Comparable elements commute. Beran 84 2.3(iii) p. 40. (Contributed by
NM, 13-Oct-1997.)
|
(a ≤2 b) = 1 ⇒ C (a, b) =
1 |
|
Theorem | wbctr 410 |
Transitive inference. (Contributed by NM, 13-Oct-1997.)
|
(a ≡ b) =
1 & C
(b, c) = 1 ⇒ C (a, c) =
1 |
|
Theorem | wcbtr 411 |
Transitive inference. (Contributed by NM, 13-Oct-1997.)
|
C (a, b) =
1 & (b ≡ c) = 1 ⇒ C (a, c) =
1 |
|
Theorem | wcomorr 412 |
Weak commutation law. (Contributed by NM, 13-Oct-1997.)
|
C (a, (a ∪
b)) = 1 |
|
Theorem | wcoman1 413 |
Weak commutation law. (Contributed by NM, 13-Oct-1997.)
|
C ((a ∩ b),
a) = 1 |
|
Theorem | wcomcom 414 |
Commutation is symmetric. Kalmbach 83 p. 22. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 ⇒ C (b, a) =
1 |
|
Theorem | wcomcom2 415 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 ⇒ C (a, b⊥ ) = 1 |
|
Theorem | wcomcom3 416 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 ⇒ C (a⊥ , b) = 1 |
|
Theorem | wcomcom4 417 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 ⇒ C (a⊥ , b⊥ ) = 1 |
|
Theorem | wcomd 418 |
Commutation dual. Kalmbach 83 p. 23. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 ⇒ (a ≡ ((a
∪ b) ∩ (a ∪ b⊥ ))) = 1 |
|
Theorem | wcom3ii 419 |
Lemma 3(ii) of Kalmbach 83 p. 23. (Contributed by NM, 13-Oct-1997.)
|
C (a, b) =
1 ⇒ ((a ∩ (a⊥ ∪ b)) ≡ (a
∩ b)) = 1 |
|
Theorem | wcomcom5 420 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
13-Oct-1997.)
|
C (a⊥ , b⊥ ) = 1
⇒ C
(a, b) = 1 |
|
Theorem | wcomdr 421 |
Commutation dual. Kalmbach 83 p. 23. (Contributed by NM,
13-Oct-1997.)
|
(a ≡ ((a
∪ b) ∩ (a ∪ b⊥ ))) =
1 ⇒ C (a, b) =
1 |
|
Theorem | wcom3i 422 |
Lemma 3(i) of Kalmbach 83 p. 23. (Contributed by NM, 13-Oct-1997.)
|
((a ∩ (a⊥ ∪ b)) ≡ (a
∩ b)) = 1
⇒ C
(a, b) = 1 |
|
Theorem | wfh1 423 |
Weak structural analog of Foulis-Holland Theorem. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 & C
(a, c) = 1 ⇒ ((a ∩ (b
∪ c)) ≡ ((a ∩ b)
∪ (a ∩ c))) = 1 |
|
Theorem | wfh2 424 |
Weak structural analog of Foulis-Holland Theorem. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 & C
(a, c) = 1 ⇒ ((b ∩ (a
∪ c)) ≡ ((b ∩ a)
∪ (b ∩ c))) = 1 |
|
Theorem | wfh3 425 |
Weak structural analog of Foulis-Holland Theorem. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 & C
(a, c) = 1 ⇒ ((a ∪ (b
∩ c)) ≡ ((a ∪ b)
∩ (a ∪ c))) = 1 |
|
Theorem | wfh4 426 |
Weak structural analog of Foulis-Holland Theorem. (Contributed by NM,
13-Oct-1997.)
|
C (a, b) =
1 & C
(a, c) = 1 ⇒ ((b ∪ (a
∩ c)) ≡ ((b ∪ a)
∩ (b ∪ c))) = 1 |
|
Theorem | wcom2or 427 |
Thm. 4.2 Beran p. 49. (Contributed by NM, 10-Nov-1998.)
|
C (a, b) =
1 & C
(a, c) = 1 ⇒ C (a, (b ∪
c)) = 1 |
|
Theorem | wcom2an 428 |
Thm. 4.2 Beran p. 49. (Contributed by NM, 10-Nov-1998.)
|
C (a, b) =
1 & C
(a, c) = 1 ⇒ C (a, (b ∩
c)) = 1 |
|
Theorem | wnbdi 429 |
Negated biconditional (distributive form) (Contributed by NM,
13-Oct-1997.)
|
((a ≡ b)⊥ ≡ (((a ∪ b)
∩ a⊥ ) ∪
((a ∪ b) ∩ b⊥ ))) = 1 |
|
Theorem | wlem14 430 |
Lemma for KA14 soundness. (Contributed by NM, 25-Oct-1997.)
|
(((a ∩ b⊥ ) ∪ a⊥ )⊥ ∪
((a ∩ b⊥ ) ∪ ((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b))⊥ )))) = 1 |
|
Theorem | wr5 431 |
Proof of weak orthomodular law from weaker-looking equivalent, wom3 367,
which in turn is derived from ax-wom 361. (Contributed by NM,
25-Oct-1997.)
|
(a ≡ b) =
1 ⇒ ((a ∪ c)
≡ (b ∪ c)) = 1 |
|
0.2.4 Kalmbach axioms (soundness proofs) that
require WOML
|
|
Theorem | ska2 432 |
Soundness theorem for Kalmbach's quantum propositional logic axiom KA2.
(Contributed by NM, 10-Nov-1998.)
|
((a ≡ b)⊥ ∪ ((b ≡ c)⊥ ∪ (a ≡ c)))
= 1 |
|
Theorem | ska4 433 |
Soundness theorem for Kalmbach's quantum propositional logic axiom KA4.
(Contributed by NM, 9-Nov-1998.)
|
((a ≡ b)⊥ ∪ ((a ∩ c)
≡ (b ∩ c))) = 1 |
|
Theorem | wom2 434 |
Weak orthomodular law for study of weakly orthomodular lattices.
(Contributed by NM, 13-Nov-1998.)
|
a ≤ ((a
≡ b)⊥ ∪
((a ∪ c) ≡ (b
∪ c))) |
|
Theorem | ka4ot 435 |
3-variable version of weakly orthomodular law. It is proved from a
weaker-looking equivalent, wom2 434, which in turn is proved from
ax-wom 361. (Contributed by NM, 25-Oct-1997.)
|
((a ≡ b)⊥ ∪ ((a ∪ c)
≡ (b ∪ c))) = 1 |
|
0.2.5 Weak orthomodular law variants
|
|
Theorem | woml6 436 |
Variant of weakly orthomodular law. (Contributed by NM, 14-Nov-1998.)
|
((a →1 b)⊥ ∪ (a →2 b)) = 1 |
|
Theorem | woml7 437 |
Variant of weakly orthomodular law. (Contributed by NM, 14-Nov-1998.)
|
(((a →2 b) ∩ (b
→2 a))⊥
∪ (a ≡ b)) = 1 |
|
Theorem | ortha 438 |
Property of orthogonality. (Contributed by NM, 10-Mar-2002.)
|
a ≤ b⊥ ⇒ (a ∩ b) =
0 |
|
0.3 Orthomodular lattices
|
|
0.3.1 Orthomodular law
|
|
Axiom | ax-r3 439 |
Orthomodular law - when added to an ortholattice, it makes the
ortholattice an orthomodular lattice. See r3a 440 for
a more compact
version. (Contributed by NM, 12-Aug-1997.)
|
(c ∪ c⊥ ) = ((a⊥ ∪ b⊥ )⊥ ∪
(a ∪ b)⊥ )
⇒ a = b |
|
Theorem | r3a 440 |
Orthomodular law restated. (Contributed by NM, 12-Aug-1997.)
|
1 = (a ≡ b) ⇒ a = b |
|
Theorem | wed 441 |
Weak equivalential detachment (WBMP). (Contributed by NM,
10-Aug-1997.)
|
a = b
& (a
≡ b) = (c ≡ d) ⇒ c = d |
|
Theorem | r3b 442 |
Orthomodular law from weak equivalential detachment (WBMP).
(Contributed by NM, 10-Aug-1997.)
|
(c ∪ c⊥ ) = (a ≡ b) ⇒ a = b |
|
Theorem | lem3.1 443 |
Lemma used in proof of Thm. 3.1 of Pavicic 1993. (Contributed by NM,
12-Aug-1997.)
|
(a ∪ b) =
b
& (b⊥ ∪ a) = 1 ⇒ a = b |
|
Theorem | lem3a.1 444 |
Lemma used in proof of Thm. 3.1 of Pavicic 1993. (Contributed by NM,
12-Aug-1997.)
|
(a ∪ b) =
b
& (b⊥ ∪ a) = 1 ⇒ (a ∪ b) =
a |
|
Theorem | oml 445 |
Orthomodular law. Compare Thm. 1 of Pavicic 1987. (Contributed by NM,
12-Aug-1997.)
|
(a ∪ (a⊥ ∩ (a ∪ b))) =
(a ∪ b) |
|
Theorem | omln 446 |
Orthomodular law. (Contributed by NM, 2-Nov-1997.)
|
(a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
|
Theorem | omla 447 |
Orthomodular law. (Contributed by NM, 7-Nov-1997.)
|
(a ∩ (a⊥ ∪ (a ∩ b))) =
(a ∩ b) |
|
Theorem | omlan 448 |
Orthomodular law. (Contributed by NM, 7-Nov-1997.)
|
(a⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a⊥ ∩ b) |
|
Theorem | oml5 449 |
Orthomodular law. (Contributed by NM, 16-Nov-1997.)
|
((a ∩ b)
∪ ((a ∩ b)⊥ ∩ (b ∪ c))) =
(b ∪ c) |
|
Theorem | oml5a 450 |
Orthomodular law. (Contributed by NM, 16-Nov-1997.)
|
((a ∪ b)
∩ ((a ∪ b)⊥ ∪ (b ∩ c))) =
(b ∩ c) |
|
0.3.2 Relationship analogues using OML (ordering;
commutation)
|
|
Theorem | oml2 451 |
Orthomodular law. Kalmbach 83 p. 22. (Contributed by NM,
27-Aug-1997.)
|
a ≤ b ⇒ (a ∪ (a⊥ ∩ b)) = b |
|
Theorem | oml3 452 |
Orthomodular law. Kalmbach 83 p. 22. (Contributed by NM,
27-Aug-1997.)
|
a ≤ b
& (b
∩ a⊥ ) =
0 ⇒ a = b |
|
Theorem | comcom 453 |
Commutation is symmetric. Kalmbach 83 p. 22. (Contributed by NM,
27-Aug-1997.)
|
a C b ⇒ b C a |
|
Theorem | comcom3 454 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
27-Aug-1997.)
|
a C b ⇒ a⊥ C b |
|
Theorem | comcom4 455 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
27-Aug-1997.)
|
a C b ⇒ a⊥ C b⊥ |
|
Theorem | comd 456 |
Commutation dual. Kalmbach 83 p. 23. (Contributed by NM,
27-Aug-1997.)
|
a C b ⇒ a = ((a ∪
b) ∩ (a ∪ b⊥ )) |
|
Theorem | com3ii 457 |
Lemma 3(ii) of Kalmbach 83 p. 23. (Contributed by NM, 27-Aug-1997.)
|
a C b ⇒ (a ∩ (a⊥ ∪ b)) = (a ∩
b) |
|
Theorem | comcom5 458 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
27-Aug-1997.)
|
a⊥ C b⊥ ⇒ a C b |
|
Theorem | comcom6 459 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
26-Nov-1997.)
|
a⊥ C b ⇒ a C b |
|
Theorem | comcom7 460 |
Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM,
26-Nov-1997.)
|
a C b⊥ ⇒ a C b |
|
Theorem | comor1 461 |
Commutation law. (Contributed by NM, 9-Nov-1997.)
|
(a ∪ b) C
a |
|
Theorem | comor2 462 |
Commutation law. (Contributed by NM, 9-Nov-1997.)
|
(a ∪ b) C
b |
|
Theorem | comorr2 463 |
Commutation law. (Contributed by NM, 26-Nov-1997.)
|
b C (a
∪ b) |
|
Theorem | comanr1 464 |
Commutation law. (Contributed by NM, 26-Nov-1997.)
|
a C (a
∩ b) |
|
Theorem | comanr2 465 |
Commutation law. (Contributed by NM, 26-Nov-1997.)
|
b C (a
∩ b) |
|
Theorem | comdr 466 |
Commutation dual. Kalmbach 83 p. 23. (Contributed by NM,
27-Aug-1997.)
|
a = ((a ∪
b) ∩ (a ∪ b⊥ ))
⇒ a C b |
|
Theorem | com3i 467 |
Lemma 3(i) of Kalmbach 83 p. 23. (Contributed by NM, 28-Aug-1997.)
|
(a ∩ (a⊥ ∪ b)) = (a ∩
b) ⇒ a C b |
|
Theorem | df2c1 468 |
Dual 'commutes' analogue for ≡ analogue of =.
(Contributed by
NM, 20-Sep-1998.)
|
a = ((a ∪
b) ∩ (a ∪ b⊥ ))
⇒ a C b |
|
Theorem | fh1 469 |
Foulis-Holland Theorem. (Contributed by NM, 29-Aug-1997.)
|
a C b
& a
C c ⇒ (a ∩ (b
∪ c)) = ((a ∩ b)
∪ (a ∩ c)) |
|
Theorem | fh2 470 |
Foulis-Holland Theorem. (Contributed by NM, 29-Aug-1997.)
|
a C b
& a
C c ⇒ (b ∩ (a
∪ c)) = ((b ∩ a)
∪ (b ∩ c)) |
|
Theorem | fh3 471 |
Foulis-Holland Theorem. (Contributed by NM, 29-Aug-1997.)
|
a C b
& a
C c ⇒ (a ∪ (b
∩ c)) = ((a ∪ b)
∩ (a ∪ c)) |
|
Theorem | fh4 472 |
Foulis-Holland Theorem. (Contributed by NM, 29-Aug-1997.)
|
a C b
& a
C c ⇒ (b ∪ (a
∩ c)) = ((b ∪ a)
∩ (b ∪ c)) |
|
Theorem | fh1r 473 |
Foulis-Holland Theorem. (Contributed by NM, 23-Nov-1997.)
|
a C b
& a
C c ⇒ ((b ∪ c)
∩ a) = ((b ∩ a)
∪ (c ∩ a)) |
|
Theorem | fh2r 474 |
Foulis-Holland Theorem. (Contributed by NM, 23-Nov-1997.)
|
a C b
& a
C c ⇒ ((a ∪ c)
∩ b) = ((a ∩ b)
∪ (c ∩ b)) |
|
Theorem | fh3r 475 |
Foulis-Holland Theorem. (Contributed by NM, 23-Nov-1997.)
|
a C b
& a
C c ⇒ ((b ∩ c)
∪ a) = ((b ∪ a)
∩ (c ∪ a)) |
|
Theorem | fh4r 476 |
Foulis-Holland Theorem. (Contributed by NM, 23-Nov-1997.)
|
a C b
& a
C c ⇒ ((a ∩ c)
∪ b) = ((a ∪ b)
∩ (c ∪ b)) |
|
Theorem | fh2c 477 |
Foulis-Holland Theorem. (Contributed by NM, 20-Sep-1998.)
|
a C b
& a
C c ⇒ (b ∩ (c
∪ a)) = ((b ∩ c)
∪ (b ∩ a)) |
|
Theorem | fh4c 478 |
Foulis-Holland Theorem. (Contributed by NM, 20-Sep-1998.)
|
a C b
& a
C c ⇒ (b ∪ (c
∩ a)) = ((b ∪ c)
∩ (b ∪ a)) |
|
Theorem | fh1rc 479 |
Foulis-Holland Theorem. (Contributed by NM, 10-Mar-2002.)
|
a C b
& a
C c ⇒ ((c ∪ b)
∩ a) = ((c ∩ a)
∪ (b ∩ a)) |
|
Theorem | fh2rc 480 |
Foulis-Holland Theorem. (Contributed by NM, 20-Sep-1998.)
|
a C b
& a
C c ⇒ ((c ∪ a)
∩ b) = ((c ∩ b)
∪ (a ∩ b)) |
|
Theorem | fh3rc 481 |
Foulis-Holland Theorem. (Contributed by NM, 6-Aug-2001.)
|
a C b
& a
C c ⇒ ((c ∩ b)
∪ a) = ((c ∪ a)
∩ (b ∪ a)) |
|
Theorem | fh4rc 482 |
Foulis-Holland Theorem. (Contributed by NM, 20-Sep-1998.)
|
a C b
& a
C c ⇒ ((c ∩ a)
∪ b) = ((c ∪ b)
∩ (a ∪ b)) |
|
Theorem | com2or 483 |
Thm. 4.2 Beran p. 49. (Contributed by NM, 7-Nov-1997.)
|
a C b
& a
C c ⇒ a C (b
∪ c) |
|
Theorem | com2an 484 |
Thm. 4.2 Beran p. 49. (Contributed by NM, 7-Nov-1997.)
|
a C b
& a
C c ⇒ a C (b
∩ c) |
|
Theorem | combi 485 |
Commutation theorem for Sasaki implication. (Contributed by NM,
25-Oct-1998.)
|
a C (a
≡ b) |
|
Theorem | nbdi 486 |
Negated biconditional (distributive form) (Contributed by NM,
30-Aug-1997.)
|
(a ≡ b)⊥ = (((a ∪ b)
∩ a⊥ ) ∪
((a ∪ b) ∩ b⊥ )) |
|
Theorem | oml4 487 |
Orthomodular law. (Contributed by NM, 25-Oct-1997.)
|
((a ≡ b)
∩ a) ≤ b |
|
Theorem | oml6 488 |
Orthomodular law. (Contributed by NM, 3-Jan-1999.)
|
(a ∪ (b
∩ (a⊥ ∪ b⊥ ))) = (a ∪ b) |
|
Theorem | gsth 489 |
Gudder-Schelp's Theorem. Beran, p. 262, Thm. 4.1. (Contributed by NM,
20-Sep-1998.)
|
a C b
& b
C c
& a
C (b ∩ c) ⇒ (a ∩ b) C
c |
|
Theorem | gsth2 490 |
Stronger version of Gudder-Schelp's Theorem. Beran, p. 263, Thm. 4.2.
(Contributed by NM, 20-Sep-1998.)
|
b C c
& a
C (b ∩ c) ⇒ (a ∩ b) C
c |
|
Theorem | gstho 491 |
"OR" version of Gudder-Schelp's Theorem. (Contributed by NM,
19-Oct-1998.)
|
b C c
& a
C (b ∪ c) ⇒ (a ∪ b) C
c |
|
Theorem | gt1 492 |
Part of Lemma 1 from Gaisi Takeuti, "Quantum Set Theory".
(Contributed
by NM, 2-Dec-1998.)
|
a = (b ∪
c)
& b
≤ d
& c
≤ d⊥ ⇒ a C d |
|
0.3.3 Commutator (orthomodular lattice
theorems)
|
|
Theorem | cmtr1com 493 |
Commutator equal to 1 commutes. Theorem 2.11 of Beran, p. 86.
(Contributed by NM, 24-Jan-1999.)
|
C (a, b) =
1 ⇒ a C b |
|
Theorem | comcmtr1 494 |
Commutation implies commutator equal to 1. Theorem 2.11 of Beran,
p. 86. (Contributed by NM, 24-Jan-1999.)
|
a C b ⇒ C (a, b) =
1 |
|
Theorem | i0cmtrcom 495 |
Commutator element →0 commutator implies
commutation. (Contributed
by NM, 24-Jan-1999.)
|
(a →0 C (a, b)) =
1 ⇒ a C b |
|
0.3.4 Kalmbach conditional
|
|
Theorem | i3bi 496 |
Kalmbach implication and biconditional. (Contributed by NM,
5-Nov-1997.)
|
((a →3 b) ∩ (b
→3 a)) = (a ≡ b) |
|
Theorem | i3or 497 |
Kalmbach implication OR builder. (Contributed by NM, 26-Dec-1997.)
|
((a ≡ b)⊥ ∪ ((a ∪ c)
→3 (b ∪ c))) = 1 |
|
Theorem | df2i3 498 |
Alternate definition for Kalmbach implication. (Contributed by NM,
7-Nov-1997.)
|
(a →3 b) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) |
|
Theorem | dfi3b 499 |
Alternate Kalmbach conditional. (Contributed by NM, 6-Aug-2001.)
|
(a →3 b) = ((a⊥ ∪ b) ∩ ((a
∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b))) |
|
Theorem | dfi4b 500 |
Alternate non-tollens conditional. (Contributed by NM, 6-Aug-2001.)
|
(a →4 b) = ((a⊥ ∪ b) ∩ ((b⊥ ∪ (b ∩ a⊥ )) ∪ (b ∩ a))) |