Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > gt1 | GIF version |
Description: Part of Lemma 1 from Gaisi Takeuti, "Quantum Set Theory". (Contributed by NM, 2-Dec-1998.) |
Ref | Expression |
---|---|
gt1.1 | a = (b ∪ c) |
gt1.2 | b ≤ d |
gt1.3 | c ≤ d⊥ |
Ref | Expression |
---|---|
gt1 | a C d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt1.1 | . 2 a = (b ∪ c) | |
2 | gt1.2 | . . . . . 6 b ≤ d | |
3 | 2 | lecom 180 | . . . . 5 b C d |
4 | 3 | comcom 453 | . . . 4 d C b |
5 | gt1.3 | . . . . . . 7 c ≤ d⊥ | |
6 | 5 | lecom 180 | . . . . . 6 c C d⊥ |
7 | 6 | comcom7 460 | . . . . 5 c C d |
8 | 7 | comcom 453 | . . . 4 d C c |
9 | 4, 8 | com2or 483 | . . 3 d C (b ∪ c) |
10 | 9 | comcom 453 | . 2 (b ∪ c) C d |
11 | 1, 10 | bctr 181 | 1 a C d |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 C wc 3 ⊥ wn 4 ∪ wo 6 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |