QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  eqtr4 GIF version

Theorem eqtr4 834
Description: 4-variable transitive law for equivalence. (Contributed by NM, 26-Jun-2003.)
Assertion
Ref Expression
eqtr4 (((ab) ∩ (bc)) ∩ (cd)) ≤ (ad)

Proof of Theorem eqtr4
StepHypRef Expression
1 mlaoml 833 . . 3 ((ab) ∩ (bc)) ≤ (ac)
21leran 153 . 2 (((ab) ∩ (bc)) ∩ (cd)) ≤ ((ac) ∩ (cd))
3 mlaoml 833 . 2 ((ac) ∩ (cd)) ≤ (ad)
42, 3letr 137 1 (((ab) ∩ (bc)) ∩ (cd)) ≤ (ad)
Colors of variables: term
Syntax hints:  wle 2  tb 5  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  oago3.21x  890
  Copyright terms: Public domain W3C validator