Theorem List for Quantum Logic Explorer - 801-900 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | i1abs 801 |
An absorption law for →1 . (Contributed by NM,
21-Feb-2002.)
|
((a →1 b)⊥ ∪ (a ∩ b)) =
a |
|
Theorem | test 802 |
Part of an attempt to crack a potential Kalmbach axiom. (Contributed by
NM, 29-Dec-1997.)
|
(((c ∪ (a⊥ ∪ b⊥ )) ∩ (c⊥ ∩ (c ∪ (a
∩ b)))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))))
= ((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
|
Theorem | test2 803 |
Part of an attempt to crack a potential Kalmbach axiom. (Contributed by
NM, 29-Dec-1997.)
|
(a ∪ b) ≤
((a ≡ b)⊥ ∪ ((c ∪ (a
∩ b)) ∩ (c⊥ ∪ (a ∩ b)))) |
|
0.3.9 Some 3-variable theorems
|
|
Theorem | 3vth1 804 |
A 3-variable theorem. Equivalent to OML. (Contributed by NM,
18-Oct-1998.)
|
((a →2 b) ∩ (b
∪ c)⊥ ) ≤
(a →2 c) |
|
Theorem | 3vth2 805 |
A 3-variable theorem. Equivalent to OML. (Contributed by NM,
18-Oct-1998.)
|
((a →2 b) ∩ (b
∪ c)⊥ ) = ((a →2 c) ∩ (b
∪ c)⊥
) |
|
Theorem | 3vth3 806 |
A 3-variable theorem. Equivalent to OML. (Contributed by NM,
18-Oct-1998.)
|
((a →2 c) ∪ ((a
→2 b) ∩ (b ∪ c)⊥ )) = (a →2 c) |
|
Theorem | 3vth4 807 |
A 3-variable theorem. (Contributed by NM, 18-Oct-1998.)
|
((a →2 b)⊥ →2 (b ∪ c)) =
((a →2 c)⊥ →2 (b ∪ c)) |
|
Theorem | 3vth5 808 |
A 3-variable theorem. (Contributed by NM, 18-Oct-1998.)
|
((a →2 b)⊥ →2 (b ∪ c)) =
(c ∪ ((a →2 b) ∩ (c
→2 b))) |
|
Theorem | 3vth6 809 |
A 3-variable theorem. (Contributed by NM, 18-Oct-1998.)
|
((a →2 b)⊥ →2 (b ∪ c)) =
(((a →2 b) ∩ (c
→2 b)) ∪ ((a →2 c) ∩ (b
→2 c))) |
|
Theorem | 3vth7 810 |
A 3-variable theorem. (Contributed by NM, 18-Oct-1998.)
|
((a →2 b)⊥ →2 (b ∪ c)) =
(a →2 (b ∪ c)) |
|
Theorem | 3vth8 811 |
A 3-variable theorem. (Contributed by NM, 18-Oct-1998.)
|
(a →2 (b ∪ c)) =
(((a →2 b) ∩ (c
→2 b)) ∪ ((a →2 c) ∩ (b
→2 c))) |
|
Theorem | 3vth9 812 |
A 3-variable theorem. (Contributed by NM, 16-Nov-1998.)
|
((a ∪ b)
→1 (c →2
b)) = ((b ∪ c)
→2 (a →2
b)) |
|
Theorem | 3vcom 813 |
3-variable commutation theorem. (Contributed by NM, 19-Mar-1999.)
|
((a →1 c) ∪ (b
→1 c)) C ((a⊥ →1 c) ∩ (b⊥ →1 c)) |
|
Theorem | 3vded11 814 |
A 3-variable theorem. Experiment with weak deduction theorem.
(Contributed by NM, 25-Oct-1998.)
|
b ≤ (c
→1 (b →1
a)) ⇒ c ≤ (b
→1 a) |
|
Theorem | 3vded12 815 |
A 3-variable theorem. Experiment with weak deduction theorem.
(Contributed by NM, 25-Oct-1998.)
|
(a ∩ (c
→1 a)) ≤ (c →1 (b →1 a))
& c
≤ a ⇒ c ≤ (b
→1 a) |
|
Theorem | 3vded13 816 |
A 3-variable theorem. Experiment with weak deduction theorem.
(Contributed by NM, 25-Oct-1998.)
|
(b ∩ (c
→1 a)) ≤ (c →1 (b →1 a))
& c
≤ a ⇒ c ≤ (b
→1 a) |
|
Theorem | 3vded21 817 |
A 3-variable theorem. Experiment with weak deduction theorem.
(Contributed by NM, 31-Oct-1998.)
|
c ≤ ((a
→0 b) →0
(c →2 b))
& c
≤ (a →0 b) ⇒ c ≤ b |
|
Theorem | 3vded22 818 |
A 3-variable theorem. Experiment with weak deduction theorem.
(Contributed by NM, 31-Oct-1998.)
|
c ≤ ( C (a, b) ∪
C (c, b))
& c
≤ a
& c
≤ (a →0 b) ⇒ c ≤ b |
|
Theorem | 3vded3 819 |
A 3-variable theorem. Experiment with weak deduction theorem.
(Contributed by NM, 24-Jan-1999.)
|
(c →0 C (a, c)) =
1 & (c →0 a) = 1
& (c
→0 (a →0
b)) = 1
⇒ (c →0 b) = 1 |
|
Theorem | 1oa 820 |
Orthoarguesian-like law with →1 instead of →0 but true in all
OMLs. (Contributed by NM, 1-Nov-1998.)
|
((a →2 b) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |
|
Theorem | 1oai1 821 |
Orthoarguesian-like OM law. (Contributed by NM, 30-Dec-1998.)
|
((a →1 c) ∩ ((a
∩ b)⊥ →1
((a →1 c) ∩ (b
→1 c)))) ≤ (b →1 c) |
|
Theorem | 2oai1u 822 |
Orthoarguesian-like OM law. (Contributed by NM, 28-Feb-1999.)
|
((a →1 c) ∩ (((a
→1 c) ∩ (b →1 c))⊥ →2 ((a⊥ →1 c) ∩ (b⊥ →1 c)))) ≤ (b
→1 c) |
|
Theorem | 1oaiii 823 |
OML analog to orthoarguesian law of Godowski/Greechie, Eq. III with
→1 instead of →0
. (Contributed by NM, 1-Nov-1998.)
|
((a →2 b) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c)))) = ((a →2 c) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c)))) |
|
Theorem | 1oaii 824 |
OML analog to orthoarguesian law of Godowski/Greechie, Eq. II with
→1 instead of →0
. (Contributed by NM, 1-Nov-1998.)
|
(b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)
→1 ((a →2
b) ∩ (a →2 c)))))) ≤ a⊥ |
|
Theorem | 2oalem1 825 |
Lemma for OA-like stuff with →2 instead of →0 . (Contributed by
NM, 15-Nov-1998.)
|
((a →2 b)⊥ ∪ ((b ∪ c)
∪ ((a →2 b) ∩ (a
→2 c)))) =
1 |
|
Theorem | 2oath1 826 |
OA-like theorem with →2 instead of →0 . (Contributed by NM,
15-Nov-1998.)
|
((a →2 b) ∩ ((b
∪ c) →2 ((a →2 b) ∩ (a
→2 c)))) = ((a →2 b) ∩ (a
→2 c)) |
|
Theorem | 2oath1i1 827 |
Orthoarguesian-like OM law. (Contributed by NM, 30-Dec-1998.)
|
((a →1 c) ∩ ((a
∩ b)⊥ →2
((a →1 c) ∩ (b
→1 c)))) = ((a →1 c) ∩ (b
→1 c)) |
|
Theorem | 1oath1i1u 828 |
Orthoarguesian-like OM law. (Contributed by NM, 28-Feb-1999.)
|
((a →1 c) ∩ (((a
→1 c) ∩ (b →1 c))⊥ →1 ((a⊥ →1 c) ∩ (b⊥ →1 c)))) = ((a
→1 c) ∩ (b →1 c)) |
|
Theorem | oale 829 |
Relation for studying OA. (Contributed by NM, 18-Nov-1998.)
|
((a →2 b) ∩ ((b
∪ c) ∪ ((a →2 b) ∩ (a
→2 c)))⊥
) ≤ (a →2 c) |
|
Theorem | oaeqv 830 |
Weakened OA implies OA). (Contributed by NM, 16-Nov-1998.)
|
((a →2 b) ∩ ((b
∪ c)⊥ ∪
((a →2 b) ∩ (a
→2 c)))) ≤ ((b ∪ c)
→2 ((a →2
b) ∩ (a →2 c))) ⇒ ((a →2 b) ∩ ((b
∪ c)⊥ ∪
((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |
|
Theorem | 3vroa 831 |
OA-like inference rule (requires OM only). (Contributed by NM,
13-Nov-1998.)
|
((a →2 b) ∩ ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c)))) =
1 ⇒ (a →2 c) = 1 |
|
Theorem | mlalem 832 |
Lemma for Mladen's OML. (Contributed by NM, 4-Nov-1998.)
|
((a ≡ b)
∩ (b →1 c)) ≤ (a
→1 c) |
|
Theorem | mlaoml 833 |
Mladen's OML. (Contributed by NM, 4-Nov-1998.)
|
((a ≡ b)
∩ (b ≡ c)) ≤ (a
≡ c) |
|
Theorem | eqtr4 834 |
4-variable transitive law for equivalence. (Contributed by NM,
26-Jun-2003.)
|
(((a ≡ b)
∩ (b ≡ c)) ∩ (c
≡ d)) ≤ (a ≡ d) |
|
Theorem | sac 835 |
Theorem showing "Sasaki complement" is an operation. (Contributed by
NM, 3-Jan-1999.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ →1 c) = (b⊥ →1 c) |
|
Theorem | sa5 836 |
Possible axiom for a "Sasaki algebra" for orthoarguesian lattices.
(Contributed by NM, 3-Jan-1999.)
|
(a →1 c) ≤ (b
→1 c) ⇒ (b⊥ →1 c) ≤ ((a⊥ →1 c) ∪ c) |
|
Theorem | salem1 837 |
Lemma for attempt at Sasaki algebra. (Contributed by NM, 4-Jan-1999.)
|
(((a⊥ →1 b) ∪ b)
→1 b) = (a →2 b) |
|
Theorem | sadm3 838 |
Weak DeMorgan's law for attempt at Sasaki algebra. (Contributed by NM,
4-Jan-1999.)
|
(((a⊥ →1 c) ∩ (b⊥ →1 c)) →1 c) ≤ ((a
→1 c) ∪ (b →1 c)) |
|
Theorem | bi3 839 |
Chained biconditional. (Contributed by NM, 2-Mar-2000.)
|
((a ≡ b)
∩ (b ≡ c)) = (((a
∩ b) ∩ c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
|
Theorem | bi4 840 |
Chained biconditional. (Contributed by NM, 25-Jun-2003.)
|
(((a ≡ b)
∩ (b ≡ c)) ∩ (c
≡ d)) = ((((a ∩ b)
∩ c) ∩ d) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |
|
Theorem | imp3 841 |
Implicational product with 3 variables. Theorem 3.20 of "Equations,
states, and lattices..." paper. (Contributed by NM, 3-Mar-2000.)
|
((a →2 b) ∩ (b
→1 c)) = ((a⊥ ∩ b⊥ ) ∪ (b ∩ c)) |
|
Theorem | orbi 842 |
Disjunction of biconditionals. (Contributed by NM, 5-Jul-2000.)
|
((a ≡ c)
∪ (b ≡ c)) = (((a
→2 c) ∪ (b →2 c)) ∩ ((c
→1 a) ∪ (c →1 b))) |
|
Theorem | orbile 843 |
Disjunction of biconditionals. (Contributed by NM, 5-Jul-2000.)
|
((a ≡ c)
∪ (b ≡ c)) ≤ (((a
∩ b) →2 c) ∩ (c
→1 (a ∪ b))) |
|
Theorem | mlaconj4 844 |
For 4GO proof of Mladen's conjecture, that it follows from Eq. (3.30)
in OA-GO paper. (Contributed by NM, 8-Jul-2000.)
|
((d ≡ e)
∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c)))
≤ (d ≡ c)
& d =
(a ∪ b)
& e =
(a ∩ b) ⇒ ((a ≡ b)
∩ ((a ≡ c) ∪ (b
≡ c))) ≤ (a ≡ c) |
|
Theorem | mlaconj 845 |
For 5GO proof of Mladen's conjecture. (Contributed by NM,
20-Jan-2002.)
|
((a ≡ b)
∩ ((a ≡ c) ∪ (b
≡ c))) ≤ ((((a →1 (a ∩ b))
∩ ((a ∩ b) →1 ((a ∩ b)
∪ c))) ∩ ((((a ∩ b)
∪ c) →1 c) ∩ (c
→1 (a ∪ b)))) ∩ ((a
∪ b) →1 a)) |
|
Theorem | mlaconj2 846 |
For 5GO proof of Mladen's conjecture. Hypothesis is 5GO law
consequence. (Contributed by NM, 6-Jul-2000.)
|
((((a →1 (a ∩ b))
∩ ((a ∩ b) →1 ((a ∩ b)
∪ c))) ∩ ((((a ∩ b)
∪ c) →1 c) ∩ (c
→1 (a ∪ b)))) ∩ ((a
∪ b) →1 a)) ≤ (a
≡ c) ⇒ ((a ≡ b)
∩ ((a ≡ c) ∪ (b
≡ c))) ≤ (a ≡ c) |
|
Theorem | i1orni1 847 |
Complemented antecedent lemma. (Contributed by NM, 6-Aug-2001.)
|
((a →1 b) ∪ (a⊥ →1 b)) = 1 |
|
Theorem | negantlem1 848 |
Lemma for negated antecedent identity. (Contributed by NM,
6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ a C (b
→1 c) |
|
Theorem | negantlem2 849 |
Lemma for negated antecedent identity. (Contributed by NM,
6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ a ≤ (b⊥ →1 c) |
|
Theorem | negantlem3 850 |
Lemma for negated antecedent identity. (Contributed by NM,
6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ ∩ c) ≤ (b⊥ →1 c) |
|
Theorem | negantlem4 851 |
Lemma for negated antecedent identity. (Contributed by NM,
6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ →1 c) ≤ (b⊥ →1 c) |
|
Theorem | negant 852 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ →1 c) = (b⊥ →1 c) |
|
Theorem | negantlem5 853 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ ∩ c⊥ ) = (b⊥ ∩ c⊥ ) |
|
Theorem | negantlem6 854 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a ∩ c⊥ ) = (b ∩ c⊥ ) |
|
Theorem | negantlem7 855 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a ∪ c) =
(b ∪ c) |
|
Theorem | negantlem8 856 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ ∪ c) = (b⊥ ∪ c) |
|
Theorem | negant0 857 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ →0 c) = (b⊥ →0 c) |
|
Theorem | negant2 858 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ →2 c) = (b⊥ →2 c) |
|
Theorem | negantlem9 859 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a →3 c) ≤ (b
→3 c) |
|
Theorem | negant3 860 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ →3 c) = (b⊥ →3 c) |
|
Theorem | negantlem10 861 |
Lemma for negated antecedent identity. (Contributed by NM,
6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a →4 c) ≤ (b
→4 c) |
|
Theorem | negant4 862 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ →4 c) = (b⊥ →4 c) |
|
Theorem | negant5 863 |
Negated antecedent identity. (Contributed by NM, 6-Aug-2001.)
|
(a →1 c) = (b
→1 c) ⇒ (a⊥ →5 c) = (b⊥ →5 c) |
|
Theorem | neg3antlem1 864 |
Lemma for negated antecedent identity. (Contributed by NM,
7-Aug-2001.)
|
(a →3 c) = (b
→3 c) ⇒ (a ∩ c) ≤
(b →1 c) |
|
Theorem | neg3antlem2 865 |
Lemma for negated antecedent identity. (Contributed by NM,
7-Aug-2001.)
|
(a →3 c) = (b
→3 c) ⇒ a⊥ ≤ (b →1 c) |
|
Theorem | neg3ant1 866 |
Lemma for negated antecedent identity. (Contributed by NM,
7-Aug-2001.)
|
(a →3 c) = (b
→3 c) ⇒ (a →1 c) = (b
→1 c) |
|
Theorem | elimconslem 867 |
Lemma for consequent elimination law. (Contributed by NM,
3-Mar-2002.)
|
(a →1 c) = (b
→1 c) & (a ∩ c) ≤
(b ∪ c⊥ )
⇒ a ≤ (b ∪
c⊥ ) |
|
Theorem | elimcons 868 |
Consequent elimination law. (Contributed by NM, 3-Mar-2002.)
|
(a →1 c) = (b
→1 c) & (a ∩ c) ≤
(b ∪ c⊥ )
⇒ a ≤ b |
|
Theorem | elimcons2 869 |
Consequent elimination law. (Contributed by NM, 12-Mar-2002.)
|
(a →1 c) = (b
→1 c) & (a ∩ (c
∩ (b →1 c))) ≤ (b
∪ (c⊥ ∪ (a →1 c)⊥ ))
⇒ a ≤ b |
|
Theorem | comanblem1 870 |
Lemma for biconditional commutation law. (Contributed by NM,
1-Dec-1999.)
|
((a ≡ c)
∩ (b ≡ c)) = (((a
∪ c)⊥ ∪
((a ∩ b) ∩ c))
∩ (b →1 c)) |
|
Theorem | comanblem2 871 |
Lemma for biconditional commutation law. (Contributed by NM,
1-Dec-1999.)
|
((a ∩ b)
∩ ((a ≡ c) ∩ (b
≡ c))) = ((a ∩ b)
∩ c) |
|
Theorem | comanb 872 |
Biconditional commutation law. (Contributed by NM, 1-Dec-1999.)
|
(a ∩ b) C
((a ≡ c) ∩ (b
≡ c)) |
|
Theorem | comanbn 873 |
Biconditional commutation law. (Contributed by NM, 1-Dec-1999.)
|
(a⊥ ∩ b⊥ ) C ((a ≡ c)
∩ (b ≡ c)) |
|
Theorem | mhlemlem1 874 |
Lemma for Lemma 7.1 of Kalmbach, p. 91. (Contributed by NM,
10-Mar-2002.)
|
(a ∪ b) ≤
(c ∪ d)⊥ ⇒ (((a ∪ b)
∪ c) ∩ (a ∪ (c
∪ d))) = (a ∪ c) |
|
Theorem | mhlemlem2 875 |
Lemma for Lemma 7.1 of Kalmbach, p. 91. (Contributed by NM,
10-Mar-2002.)
|
(a ∪ b) ≤
(c ∪ d)⊥ ⇒ (((a ∪ b)
∪ d) ∩ (b ∪ (c
∪ d))) = (b ∪ d) |
|
Theorem | mhlem 876 |
Lemma 7.1 of Kalmbach, p. 91. (Contributed by NM, 10-Mar-2002.)
|
(a ∪ b) ≤
(c ∪ d)⊥ ⇒ ((a ∪ c)
∩ (b ∪ d)) = ((a ∩
b) ∪ (c ∩ d)) |
|
Theorem | mhlem1 877 |
Lemma for Marsden-Herman distributive law. (Contributed by NM,
10-Mar-2002.)
|
a C b
& c
C b ⇒ ((a ∪ b)
∩ (b⊥ ∪ c)) = ((a ∩
b⊥ ) ∪ (b ∩ c)) |
|
Theorem | mhlem2 878 |
Lemma for Marsden-Herman distributive law. (Contributed by NM,
10-Mar-2002.)
|
a C c
& a
C d
& b
C c
& b
C d ⇒ (((a ∪ c)
∩ (c⊥ ∪ b⊥ )) ∩ ((b ∪ d)
∩ (a⊥ ∪ d⊥ ))) = (((a ∩ c⊥ ) ∩ (b ∩ d⊥ )) ∪ ((c ∩ b⊥ ) ∩ (d ∩ a⊥ ))) |
|
Theorem | mh 879 |
Marsden-Herman distributive law. Lemma 7.2 of Kalmbach, p. 91.
(Contributed by NM, 10-Mar-2002.)
|
a C c
& a
C d
& b
C c
& b
C d ⇒ ((a ∪ c)
∩ (b ∪ d)) = (((a
∩ b) ∪ (a ∩ d))
∪ ((c ∩ b) ∪ (c
∩ d))) |
|
Theorem | marsdenlem1 880 |
Lemma for Marsden-Herman distributive law. (Contributed by NM,
26-Feb-2002.)
|
a C b
& b
C c
& c
C d
& d
C a ⇒ ((a ∪ b)
∩ (a⊥ ∪ d⊥ )) = ((a⊥ ∩ (a ∪ b))
∪ (d⊥ ∩ (a ∪ b))) |
|
Theorem | marsdenlem2 881 |
Lemma for Marsden-Herman distributive law. (Contributed by NM,
26-Feb-2002.)
|
a C b
& b
C c
& c
C d
& d
C a ⇒ ((c ∪ d)
∩ (b⊥ ∪ c⊥ )) = (((b⊥ ∩ c) ∪ (c⊥ ∩ d)) ∪ (b⊥ ∩ d)) |
|
Theorem | marsdenlem3 882 |
Lemma for Marsden-Herman distributive law. (Contributed by NM,
26-Feb-2002.)
|
a C b
& b
C c
& c
C d
& d
C a ⇒ (((b⊥ ∩ c) ∪ (c⊥ ∩ d)) ∩ (b
∩ d⊥ )) =
0 |
|
Theorem | marsdenlem4 883 |
Lemma for Marsden-Herman distributive law. (Contributed by NM,
26-Feb-2002.)
|
a C b
& b
C c
& c
C d
& d
C a ⇒ (((a⊥ ∩ b) ∪ (a
∩ d⊥ )) ∩
(b⊥ ∩ d)) = 0 |
|
Theorem | mh2 884 |
Marsden-Herman distributive law. Corollary 3.3 of Beran, p. 259.
(Contributed by NM, 10-Mar-2002.)
|
a C b
& b
C c
& c
C d
& d
C a ⇒ ((a ∪ b)
∩ (c ∪ d)) = (((a
∩ c) ∪ (a ∩ d))
∪ ((b ∩ c) ∪ (b
∩ d))) |
|
Theorem | mlaconjolem 885 |
Lemma for OML proof of Mladen's conjecture. (Contributed by NM,
10-Mar-2002.)
|
((a ≡ c)
∪ (b ≡ c)) ≤ ((c
∩ (a ∪ b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |
|
Theorem | mlaconjo 886 |
OML proof of Mladen's conjecture. (Contributed by NM, 10-Mar-2002.)
|
((a ≡ b)
∩ ((a ≡ c) ∪ (b
≡ c))) ≤ (a ≡ c) |
|
Theorem | distid 887 |
Distributive law for identity. (Contributed by NM, 17-Mar-2002.)
|
((a ≡ b)
∩ ((a ≡ c) ∪ (b
≡ c))) = (((a ≡ b)
∩ (a ≡ c)) ∪ ((a
≡ b) ∩ (b ≡ c))) |
|
Theorem | mhcor1 888 |
Corollary of Marsden-Herman Lemma. (Contributed by NM, 26-Jun-2003.)
|
((((a →1 b) ∩ (b
→2 c)) ∩ (c →1 d)) ∩ (d
→2 a)) = (((a ≡ b)
∩ (b ≡ c)) ∩ (c
≡ d)) |
|
Theorem | oago3.29 889 |
Equation (3.29) of "Equations, states, and lattices..." paper. This
shows
that it holds in all OMLs, not just 4GO. (Contributed by NM,
22-Jun-2003.)
|
((a →1 b) ∩ ((b
→2 c) ∩ (c →1 a))) ≤ (a
≡ c) |
|
Theorem | oago3.21x 890 |
4-variable extension of Equation (3.21) of "Equations, states, and
lattices..." paper. This shows that it holds in all OMLs, not just
4GO.
(Contributed by NM, 26-Jun-2003.)
|
((((a →5 b) ∩ (b
→5 c)) ∩ (c →5 d)) ∩ (d
→5 a)) = (((a ≡ b)
∩ (b ≡ c)) ∩ (c
≡ d)) |
|
Theorem | cancellem 891 |
Lemma for cancellation law eliminating →1
consequent. (Contributed
by NM, 21-Feb-2002.)
|
((d ∪ (a
→1 c)) →1
c) = ((d ∪ (b
→1 c)) →1
c) ⇒ (d ∪ (a
→1 c)) ≤ (d ∪ (b
→1 c)) |
|
Theorem | cancel 892 |
Cancellation law eliminating →1 consequent.
(Contributed by NM,
21-Feb-2002.)
|
((d ∪ (a
→1 c)) →1
c) = ((d ∪ (b
→1 c)) →1
c) ⇒ (d ∪ (a
→1 c)) = (d ∪ (b
→1 c)) |
|
Theorem | kb10iii 893 |
Exercise 10(iii) of Kalmbach p. 30 (in a rewritten form). (Contributed
by NM, 9-Jan-2004.)
|
b⊥ ≤ (a →1 c) ⇒ c⊥ ≤ (a →1 b) |
|
Theorem | e2ast2 894 |
Show that the E*2 derivative on p. 23 of
Mayet, "Equations holding in
Hilbert lattices" IJTP 2006, holds in all OMLs. (Contributed by
NM,
24-Jun-2006.)
|
a ≤ b⊥
& c
≤ d⊥ & a ≤ c⊥ ⇒ ((a ∪ b)
∩ (c ∪ d)) ≤ ((b
∪ d) ∪ (a ∪ c)⊥ ) |
|
Theorem | e2astlem1 895 |
Lemma towards a possible proof that E*2 on p.
23 of Mayet, "Equations
holding in Hilbert lattices" IJTP 2006, holds in all OMLs.
(Contributed
by NM, 25-Jun-2006.)
|
a ≤ b⊥
& c
≤ d⊥ & r ≤ a⊥
& a
≤ c⊥ & c ≤ r⊥ ⇒ (((a ∪ b)
∩ (c ∪ d)) ∩ ((a
∪ c) ∪ r)) = ((a ∪
(b ∩ (c ∪ r)))
∩ (c ∪ (d ∩ (a
∪ r)))) |
|
0.3.10 OML lemmas for studying Godowski
equations
|
|
Theorem | govar 896 |
Lemma for converting n-variable Godowski equations to 2n-variable
equations. (Contributed by NM, 19-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ ⇒ ((a ∪ b)
∩ (a →2 c)) ≤ (b
∪ c) |
|
Theorem | govar2 897 |
Lemma for converting n-variable to 2n-variable Godowski equations.
(Contributed by NM, 19-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ ⇒ (a ∪ b) ≤
(c →2 a) |
|
Theorem | gon2n 898 |
Lemma for converting n-variable to 2n-variable Godowski equations.
(Contributed by NM, 19-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & ((c →2 a) ∩ d)
≤ (a →2 c)
& e
≤ d ⇒ ((a ∪ b)
∩ e) ≤ (b ∪ c) |
|
Theorem | go2n4 899 |
8-variable Godowski equation derived from 4-variable one. The last
hypothesis is the 4-variable Godowski equation. (Contributed by NM,
19-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& d
≤ e⊥ & e ≤ f⊥
& f
≤ g⊥ & g ≤ h⊥
& h
≤ a⊥ & (((c →2 a) ∩ (a
→2 g)) ∩ ((g →2 e) ∩ (e
→2 c))) ≤ (a →2 c) ⇒ (((a ∪ b)
∩ (c ∪ d)) ∩ ((e
∪ f) ∩ (g ∪ h)))
≤ (b ∪ c) |
|
Theorem | gomaex4 900 |
Proof of Mayet Example 4 from 4-variable Godowski equation. R. Mayet,
"Equational bases for some varieties of orthomodular lattices
related
to states", Algebra Universalis 23 (1986), 167-195. (Contributed
by
NM, 19-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& d
≤ e⊥ & e ≤ f⊥
& f
≤ g⊥ & g ≤ h⊥
& h
≤ a⊥ & (((a →2 g) ∩ (g
→2 e)) ∩ ((e →2 c) ∩ (c
→2 a))) ≤ (g →2 a)
& (((e
→2 c) ∩ (c →2 a)) ∩ ((a
→2 g) ∩ (g →2 e))) ≤ (c
→2 e) ⇒ ((((a ∪ b)
∩ (c ∪ d)) ∩ ((e
∪ f) ∩ (g ∪ h)))
∩ ((a ∪ h) →1 (d ∪ e)⊥ )) = 0 |