Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > fh1rc | GIF version |
Description: Foulis-Holland Theorem. (Contributed by NM, 10-Mar-2002.) |
Ref | Expression |
---|---|
fh.1 | a C b |
fh.2 | a C c |
Ref | Expression |
---|---|
fh1rc | ((c ∪ b) ∩ a) = ((c ∩ a) ∪ (b ∩ a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fh.1 | . . 3 a C b | |
2 | fh.2 | . . 3 a C c | |
3 | 1, 2 | fh1r 473 | . 2 ((b ∪ c) ∩ a) = ((b ∩ a) ∪ (c ∩ a)) |
4 | ax-a2 31 | . . 3 (c ∪ b) = (b ∪ c) | |
5 | 4 | ran 78 | . 2 ((c ∪ b) ∩ a) = ((b ∪ c) ∩ a) |
6 | ax-a2 31 | . 2 ((c ∩ a) ∪ (b ∩ a)) = ((b ∩ a) ∪ (c ∩ a)) | |
7 | 3, 5, 6 | 3tr1 63 | 1 ((c ∪ b) ∩ a) = ((c ∩ a) ∪ (b ∩ a)) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: mhlemlem1 874 |
Copyright terms: Public domain | W3C validator |