Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  fh4c GIF version

Theorem fh4c 478
 Description: Foulis-Holland Theorem.
Hypotheses
Ref Expression
fh.1 a C b
fh.2 a C c
Assertion
Ref Expression
fh4c (b ∪ (ca)) = ((bc) ∩ (ba))

Proof of Theorem fh4c
StepHypRef Expression
1 fh.1 . . 3 a C b
2 fh.2 . . 3 a C c
31, 2fh4 472 . 2 (b ∪ (ac)) = ((ba) ∩ (bc))
4 ancom 74 . . 3 (ca) = (ac)
54lor 70 . 2 (b ∪ (ca)) = (b ∪ (ac))
6 ancom 74 . 2 ((bc) ∩ (ba)) = ((ba) ∩ (bc))
73, 5, 63tr1 63 1 (b ∪ (ca)) = ((bc) ∩ (ba))
 Colors of variables: term Syntax hints:   = wb 1   C wc 3   ∪ wo 6   ∩ wa 7 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131  df-c1 132  df-c2 133 This theorem is referenced by:  oml6  488  e2ast2  894
 Copyright terms: Public domain W3C validator