Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > fh4c | GIF version |
Description: Foulis-Holland Theorem. (Contributed by NM, 20-Sep-1998.) |
Ref | Expression |
---|---|
fh.1 | a C b |
fh.2 | a C c |
Ref | Expression |
---|---|
fh4c | (b ∪ (c ∩ a)) = ((b ∪ c) ∩ (b ∪ a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fh.1 | . . 3 a C b | |
2 | fh.2 | . . 3 a C c | |
3 | 1, 2 | fh4 472 | . 2 (b ∪ (a ∩ c)) = ((b ∪ a) ∩ (b ∪ c)) |
4 | ancom 74 | . . 3 (c ∩ a) = (a ∩ c) | |
5 | 4 | lor 70 | . 2 (b ∪ (c ∩ a)) = (b ∪ (a ∩ c)) |
6 | ancom 74 | . 2 ((b ∪ c) ∩ (b ∪ a)) = ((b ∪ a) ∩ (b ∪ c)) | |
7 | 3, 5, 6 | 3tr1 63 | 1 (b ∪ (c ∩ a)) = ((b ∪ c) ∩ (b ∪ a)) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: oml6 488 e2ast2 894 |
Copyright terms: Public domain | W3C validator |