Proof of Theorem mhlemlem1
Step | Hyp | Ref
| Expression |
1 | | leo 158 |
. . . . 5
a ≤ (a ∪ b) |
2 | 1 | ler 149 |
. . . 4
a ≤ ((a ∪ b) ∪
c) |
3 | 2 | lecom 180 |
. . 3
a C ((a ∪ b) ∪
c) |
4 | | mhlem.1 |
. . . . . 6
(a ∪ b) ≤ (c ∪
d)⊥ |
5 | 1, 4 | letr 137 |
. . . . 5
a ≤ (c ∪ d)⊥ |
6 | 5 | lecom 180 |
. . . 4
a C (c ∪ d)⊥ |
7 | 6 | comcom7 460 |
. . 3
a C (c ∪ d) |
8 | 3, 7 | fh2 470 |
. 2
(((a ∪ b) ∪ c)
∩ (a ∪ (c ∪ d))) =
((((a ∪ b) ∪ c)
∩ a) ∪ (((a ∪ b) ∪
c) ∩ (c ∪ d))) |
9 | | ancom 74 |
. . . 4
(((a ∪ b) ∪ c)
∩ a) = (a ∩ ((a
∪ b) ∪ c)) |
10 | | ax-a3 32 |
. . . . 5
((a ∪ b) ∪ c) =
(a ∪ (b ∪ c)) |
11 | 10 | lan 77 |
. . . 4
(a ∩ ((a ∪ b) ∪
c)) = (a ∩ (a ∪
(b ∪ c))) |
12 | | anabs 121 |
. . . 4
(a ∩ (a ∪ (b ∪
c))) = a |
13 | 9, 11, 12 | 3tr 65 |
. . 3
(((a ∪ b) ∪ c)
∩ a) = a |
14 | | comor1 461 |
. . . . 5
(c ∪ d) C c |
15 | 4 | lecon3 157 |
. . . . . . 7
(c ∪ d) ≤ (a ∪
b)⊥ |
16 | 15 | lecom 180 |
. . . . . 6
(c ∪ d) C (a
∪ b)⊥ |
17 | 16 | comcom7 460 |
. . . . 5
(c ∪ d) C (a
∪ b) |
18 | 14, 17 | fh1rc 479 |
. . . 4
(((a ∪ b) ∪ c)
∩ (c ∪ d)) = (((a ∪
b) ∩ (c ∪ d))
∪ (c ∩ (c ∪ d))) |
19 | 4 | ortha 438 |
. . . . 5
((a ∪ b) ∩ (c
∪ d)) = 0 |
20 | | anabs 121 |
. . . . 5
(c ∩ (c ∪ d)) =
c |
21 | 19, 20 | 2or 72 |
. . . 4
(((a ∪ b) ∩ (c
∪ d)) ∪ (c ∩ (c ∪
d))) = (0 ∪ c) |
22 | | or0r 103 |
. . . 4
(0 ∪ c) = c |
23 | 18, 21, 22 | 3tr 65 |
. . 3
(((a ∪ b) ∪ c)
∩ (c ∪ d)) = c |
24 | 13, 23 | 2or 72 |
. 2
((((a ∪ b) ∪ c)
∩ a) ∪ (((a ∪ b) ∪
c) ∩ (c ∪ d))) =
(a ∪ c) |
25 | 8, 24 | ax-r2 36 |
1
(((a ∪ b) ∪ c)
∩ (a ∪ (c ∪ d))) =
(a ∪ c) |