QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  gomaex3h11 GIF version

Theorem gomaex3h11 912
Description: Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.)
Hypotheses
Ref Expression
gomaex3h11.22 y = (ef)
gomaex3h11.23 z = f
Assertion
Ref Expression
gomaex3h11 yz

Proof of Theorem gomaex3h11
StepHypRef Expression
1 leor 159 . . 3 f ≤ (ef)
21lecon 154 . 2 (ef)f
3 gomaex3h11.22 . 2 y = (ef)
4 gomaex3h11.23 . . 3 z = f
54ax-r4 37 . 2 z = f
62, 3, 5le3tr1 140 1 yz
Colors of variables: term
Syntax hints:   = wb 1  wle 2   wn 4  wo 6
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-le1 130  df-le2 131
This theorem is referenced by:  gomaex3lem5  918
  Copyright terms: Public domain W3C validator