Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > gomaex3lem5 | GIF version |
Description: Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
Ref | Expression |
---|---|
gomaex3lem5.1 | a ≤ b⊥ |
gomaex3lem5.2 | b ≤ c⊥ |
gomaex3lem5.3 | c ≤ d⊥ |
gomaex3lem5.5 | e ≤ f⊥ |
gomaex3lem5.6 | f ≤ a⊥ |
gomaex3lem5.8 | (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) |
gomaex3lem5.9 | p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ |
gomaex3lem5.10 | q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ |
gomaex3lem5.11 | r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) |
gomaex3lem5.12 | g = a |
gomaex3lem5.13 | h = b |
gomaex3lem5.14 | i = c |
gomaex3lem5.15 | j = (c ∪ d)⊥ |
gomaex3lem5.16 | k = r |
gomaex3lem5.17 | m = (p⊥ →1 q) |
gomaex3lem5.18 | n = (p⊥ →1 q)⊥ |
gomaex3lem5.19 | u = (p⊥ ∩ q) |
gomaex3lem5.20 | w = q⊥ |
gomaex3lem5.21 | x = q |
gomaex3lem5.22 | y = (e ∪ f)⊥ |
gomaex3lem5.23 | z = f |
Ref | Expression |
---|---|
gomaex3lem5 | (((g ∪ h) ∩ (i ∪ j)) ∩ (((k ∪ m) ∩ (n ∪ u)) ∩ ((w ∪ x) ∩ (y ∪ z)))) ≤ (h ∪ i) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gomaex3lem5.1 | . . 3 a ≤ b⊥ | |
2 | gomaex3lem5.12 | . . 3 g = a | |
3 | gomaex3lem5.13 | . . 3 h = b | |
4 | 1, 2, 3 | gomaex3h1 902 | . 2 g ≤ h⊥ |
5 | gomaex3lem5.2 | . . 3 b ≤ c⊥ | |
6 | gomaex3lem5.14 | . . 3 i = c | |
7 | 5, 3, 6 | gomaex3h2 903 | . 2 h ≤ i⊥ |
8 | gomaex3lem5.15 | . . 3 j = (c ∪ d)⊥ | |
9 | 6, 8 | gomaex3h3 904 | . 2 i ≤ j⊥ |
10 | gomaex3lem5.11 | . . 3 r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) | |
11 | gomaex3lem5.16 | . . 3 k = r | |
12 | 10, 8, 11 | gomaex3h4 905 | . 2 j ≤ k⊥ |
13 | gomaex3lem5.17 | . . 3 m = (p⊥ →1 q) | |
14 | 10, 11, 13 | gomaex3h5 906 | . 2 k ≤ m⊥ |
15 | gomaex3lem5.18 | . . 3 n = (p⊥ →1 q)⊥ | |
16 | 13, 15 | gomaex3h6 907 | . 2 m ≤ n⊥ |
17 | gomaex3lem5.19 | . . 3 u = (p⊥ ∩ q) | |
18 | 15, 17 | gomaex3h7 908 | . 2 n ≤ u⊥ |
19 | gomaex3lem5.20 | . . 3 w = q⊥ | |
20 | 17, 19 | gomaex3h8 909 | . 2 u ≤ w⊥ |
21 | gomaex3lem5.21 | . . 3 x = q | |
22 | 19, 21 | gomaex3h9 910 | . 2 w ≤ x⊥ |
23 | gomaex3lem5.10 | . . 3 q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ | |
24 | gomaex3lem5.22 | . . 3 y = (e ∪ f)⊥ | |
25 | 23, 21, 24 | gomaex3h10 911 | . 2 x ≤ y⊥ |
26 | gomaex3lem5.23 | . . 3 z = f | |
27 | 24, 26 | gomaex3h11 912 | . 2 y ≤ z⊥ |
28 | gomaex3lem5.6 | . . 3 f ≤ a⊥ | |
29 | 28, 2, 26 | gomaex3h12 913 | . 2 z ≤ g⊥ |
30 | gomaex3lem5.8 | . 2 (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) | |
31 | 4, 7, 9, 12, 14, 16, 18, 20, 22, 25, 27, 29, 30 | go2n6 901 | 1 (((g ∪ h) ∩ (i ∪ j)) ∩ (((k ∪ m) ∩ (n ∪ u)) ∩ ((w ∪ x) ∩ (y ∪ z)))) ≤ (h ∪ i) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: gomaex3lem6 919 |
Copyright terms: Public domain | W3C validator |