Proof of Theorem gomaex3h10
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . 3
((e ∪ f) ∩ ((e
∪ f) ∩ (b ∪ c)⊥ )⊥ ) ≤
(e ∪ f) |
2 | | gomaex3h10.10 |
. . . 4
q = ((e ∪ f)
→1 (b ∪ c)⊥
)⊥ |
3 | | df-i1 44 |
. . . . . 6
((e ∪ f) →1 (b ∪ c)⊥ ) = ((e ∪ f)⊥ ∪ ((e ∪ f) ∩
(b ∪ c)⊥ )) |
4 | 3 | ax-r4 37 |
. . . . 5
((e ∪ f) →1 (b ∪ c)⊥ )⊥ =
((e ∪ f)⊥ ∪ ((e ∪ f) ∩
(b ∪ c)⊥
))⊥ |
5 | | anor1 88 |
. . . . . 6
((e ∪ f) ∩ ((e
∪ f) ∩ (b ∪ c)⊥ )⊥ ) =
((e ∪ f)⊥ ∪ ((e ∪ f) ∩
(b ∪ c)⊥
))⊥ |
6 | 5 | ax-r1 35 |
. . . . 5
((e ∪ f)⊥ ∪ ((e ∪ f) ∩
(b ∪ c)⊥ ))⊥ =
((e ∪ f) ∩ ((e
∪ f) ∩ (b ∪ c)⊥ )⊥
) |
7 | 4, 6 | ax-r2 36 |
. . . 4
((e ∪ f) →1 (b ∪ c)⊥ )⊥ =
((e ∪ f) ∩ ((e
∪ f) ∩ (b ∪ c)⊥ )⊥
) |
8 | 2, 7 | ax-r2 36 |
. . 3
q = ((e ∪ f) ∩
((e ∪ f) ∩ (b
∪ c)⊥
)⊥ ) |
9 | | ax-a1 30 |
. . . 4
(e ∪ f) = (e ∪
f)⊥
⊥ |
10 | 9 | ax-r1 35 |
. . 3
(e ∪ f)⊥ ⊥ = (e ∪ f) |
11 | 1, 8, 10 | le3tr1 140 |
. 2
q ≤ (e ∪ f)⊥
⊥ |
12 | | gomaex3h10.21 |
. 2
x = q |
13 | | gomaex3h10.22 |
. . 3
y = (e ∪ f)⊥ |
14 | 13 | ax-r4 37 |
. 2
y⊥ = (e ∪ f)⊥
⊥ |
15 | 11, 12, 14 | le3tr1 140 |
1
x ≤ y⊥ |