QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  gomaex3h3 GIF version

Theorem gomaex3h3 904
Description: Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.)
Hypotheses
Ref Expression
gomaex3h3.14 i = c
gomaex3h3.15 j = (cd)
Assertion
Ref Expression
gomaex3h3 ij

Proof of Theorem gomaex3h3
StepHypRef Expression
1 leo 158 . . 3 c ≤ (cd)
2 ax-a1 30 . . 3 (cd) = (cd)
31, 2lbtr 139 . 2 c ≤ (cd)
4 gomaex3h3.14 . 2 i = c
5 gomaex3h3.15 . . 3 j = (cd)
65ax-r4 37 . 2 j = (cd)
73, 4, 6le3tr1 140 1 ij
Colors of variables: term
Syntax hints:   = wb 1  wle 2   wn 4  wo 6
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-le1 130  df-le2 131
This theorem is referenced by:  gomaex3lem5  918
  Copyright terms: Public domain W3C validator