Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > gomaex3h4 | GIF version |
Description: Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
Ref | Expression |
---|---|
gomaex3h4.11 | r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) |
gomaex3h4.15 | j = (c ∪ d)⊥ |
gomaex3h4.16 | k = r |
Ref | Expression |
---|---|
gomaex3h4 | j ≤ k⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gomaex3h4.11 | . . . 4 r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) | |
2 | lear 161 | . . . 4 ((p⊥ →1 q)⊥ ∩ (c ∪ d)) ≤ (c ∪ d) | |
3 | 1, 2 | bltr 138 | . . 3 r ≤ (c ∪ d) |
4 | 3 | lecon 154 | . 2 (c ∪ d)⊥ ≤ r⊥ |
5 | gomaex3h4.15 | . 2 j = (c ∪ d)⊥ | |
6 | gomaex3h4.16 | . . 3 k = r | |
7 | 6 | ax-r4 37 | . 2 k⊥ = r⊥ |
8 | 4, 5, 7 | le3tr1 140 | 1 j ≤ k⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: gomaex3lem5 918 |
Copyright terms: Public domain | W3C validator |