QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  gomaex3h8 GIF version

Theorem gomaex3h8 909
Description: Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.)
Hypotheses
Ref Expression
gomaex3h8.19 u = (pq)
gomaex3h8.20 w = q
Assertion
Ref Expression
gomaex3h8 uw

Proof of Theorem gomaex3h8
StepHypRef Expression
1 lear 161 . . 3 (pq) ≤ q
2 ax-a1 30 . . 3 q = q
31, 2lbtr 139 . 2 (pq) ≤ q
4 gomaex3h8.19 . 2 u = (pq)
5 gomaex3h8.20 . . 3 w = q
65ax-r4 37 . 2 w = q
73, 4, 6le3tr1 140 1 uw
Colors of variables: term
Syntax hints:   = wb 1  wle 2   wn 4  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-le1 130  df-le2 131
This theorem is referenced by:  gomaex3lem5  918
  Copyright terms: Public domain W3C validator