| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > gomaex3h7 | GIF version | ||
| Description: Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
| Ref | Expression |
|---|---|
| gomaex3h7.18 | n = (p⊥ →1 q)⊥ |
| gomaex3h7.19 | u = (p⊥ ∩ q) |
| Ref | Expression |
|---|---|
| gomaex3h7 | n ≤ u⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leor 159 | . . . 4 (p⊥ ∩ q) ≤ (p⊥ ⊥ ∪ (p⊥ ∩ q)) | |
| 2 | df-i1 44 | . . . . 5 (p⊥ →1 q) = (p⊥ ⊥ ∪ (p⊥ ∩ q)) | |
| 3 | 2 | ax-r1 35 | . . . 4 (p⊥ ⊥ ∪ (p⊥ ∩ q)) = (p⊥ →1 q) |
| 4 | 1, 3 | lbtr 139 | . . 3 (p⊥ ∩ q) ≤ (p⊥ →1 q) |
| 5 | 4 | lecon 154 | . 2 (p⊥ →1 q)⊥ ≤ (p⊥ ∩ q)⊥ |
| 6 | gomaex3h7.18 | . 2 n = (p⊥ →1 q)⊥ | |
| 7 | gomaex3h7.19 | . . 3 u = (p⊥ ∩ q) | |
| 8 | 7 | ax-r4 37 | . 2 u⊥ = (p⊥ ∩ q)⊥ |
| 9 | 5, 6, 8 | le3tr1 140 | 1 n ≤ u⊥ |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 df-le1 130 df-le2 131 |
| This theorem is referenced by: gomaex3lem5 918 |
| Copyright terms: Public domain | W3C validator |