QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  i2id GIF version

Theorem i2id 276
Description: Identity law for Dishkant conditional. (Contributed by NM, 26-Jun-2003.)
Assertion
Ref Expression
i2id (a2 a) = 1

Proof of Theorem i2id
StepHypRef Expression
1 df-i2 45 . 2 (a2 a) = (a ∪ (aa ))
2 anidm 111 . . . 4 (aa ) = a
32lor 70 . . 3 (a ∪ (aa )) = (aa )
4 df-t 41 . . . 4 1 = (aa )
54ax-r1 35 . . 3 (aa ) = 1
63, 5ax-r2 36 . 2 (a ∪ (aa )) = 1
71, 6ax-r2 36 1 (a2 a) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1wt 8  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i2 45
This theorem is referenced by:  oago3.29  889
  Copyright terms: Public domain W3C validator