| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > df-i2 | GIF version | ||
| Description: Define Dishkant conditional. (Contributed by NM, 23-Nov-1997.) |
| Ref | Expression |
|---|---|
| df-i2 | (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wva | . . 3 term a | |
| 2 | wvb | . . 3 term b | |
| 3 | 1, 2 | wi2 13 | . 2 term (a →2 b) |
| 4 | 1 | wn 4 | . . . 4 term a⊥ |
| 5 | 2 | wn 4 | . . . 4 term b⊥ |
| 6 | 4, 5 | wa 7 | . . 3 term (a⊥ ∩ b⊥ ) |
| 7 | 2, 6 | wo 6 | . 2 term (b ∪ (a⊥ ∩ b⊥ )) |
| 8 | 3, 7 | wb 1 | 1 wff (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) |
| Copyright terms: Public domain | W3C validator |