Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-i2 | GIF version |
Description: Define Dishkant conditional. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
df-i2 | (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wi2 13 | . 2 term (a →2 b) |
4 | 1 | wn 4 | . . . 4 term a⊥ |
5 | 2 | wn 4 | . . . 4 term b⊥ |
6 | 4, 5 | wa 7 | . . 3 term (a⊥ ∩ b⊥ ) |
7 | 2, 6 | wo 6 | . 2 term (b ∪ (a⊥ ∩ b⊥ )) |
8 | 3, 7 | wb 1 | 1 wff (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) |
Copyright terms: Public domain | W3C validator |