Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i1id | GIF version |
Description: Identity law for Sasaki conditional. (Contributed by NM, 25-Dec-1998.) |
Ref | Expression |
---|---|
i1id | (a →1 a) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1 44 | . 2 (a →1 a) = (a⊥ ∪ (a ∩ a)) | |
2 | ax-a2 31 | . . 3 (a⊥ ∪ a) = (a ∪ a⊥ ) | |
3 | anidm 111 | . . . 4 (a ∩ a) = a | |
4 | 3 | lor 70 | . . 3 (a⊥ ∪ (a ∩ a)) = (a⊥ ∪ a) |
5 | df-t 41 | . . 3 1 = (a ∪ a⊥ ) | |
6 | 2, 4, 5 | 3tr1 63 | . 2 (a⊥ ∪ (a ∩ a)) = 1 |
7 | 1, 6 | ax-r2 36 | 1 (a →1 a) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 |
This theorem is referenced by: oa3-2lemb 979 |
Copyright terms: Public domain | W3C validator |