QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  i1id GIF version

Theorem i1id 275
Description: Identity law for Sasaki conditional. (Contributed by NM, 25-Dec-1998.)
Assertion
Ref Expression
i1id (a1 a) = 1

Proof of Theorem i1id
StepHypRef Expression
1 df-i1 44 . 2 (a1 a) = (a ∪ (aa))
2 ax-a2 31 . . 3 (aa) = (aa )
3 anidm 111 . . . 4 (aa) = a
43lor 70 . . 3 (a ∪ (aa)) = (aa)
5 df-t 41 . . 3 1 = (aa )
62, 4, 53tr1 63 . 2 (a ∪ (aa)) = 1
71, 6ax-r2 36 1 (a1 a) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1wt 8  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44
This theorem is referenced by:  oa3-2lemb  979
  Copyright terms: Public domain W3C validator