Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > anidm | GIF version |
Description: Idempotent law. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
anidm | (a ∩ a) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-a 40 | . 2 (a ∩ a) = (a⊥ ∪ a⊥ )⊥ | |
2 | oridm 110 | . . 3 (a⊥ ∪ a⊥ ) = a⊥ | |
3 | 2 | con2 67 | . 2 (a⊥ ∪ a⊥ )⊥ = a |
4 | 1, 3 | ax-r2 36 | 1 (a ∩ a) = a |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: anandi 114 anandir 115 biid 116 mi 125 lel2an 171 ler2an 173 ledi 174 ledio 176 i3id 251 i1id 275 i2id 276 nom11 308 nom14 311 nom15 312 nom21 314 nom24 317 nom25 318 wdf-c2 384 wledi 405 wledio 406 wlem14 430 oml4 487 i3bi 496 dfi3b 499 i3lem1 504 ud2lem2 564 ud3lem1b 567 ud3lem2 571 ud5lem1a 586 ud5lem1c 588 ud5lem2 590 ud5lem3a 591 ud5lem3c 593 u1lemaa 600 u3lemaa 602 u4lemaa 603 u5lemaa 604 u2lemana 606 u4lemana 608 u5lemana 609 u1lemab 610 u3lemab 612 u2lemanb 616 u3lemanb 617 u4lemanb 618 u5lemanb 619 u1lemle2 715 u4lemle2 718 u5lemle2 719 oi3oa3lem1 732 u1lem2 744 u2lem2 745 u1lem4 757 u4lem6 768 u3lem10 785 u3lem11 786 test2 803 3vth7 810 1oa 820 1oaiii 823 2oalem1 825 2oath1 826 oale 829 bi3 839 bi4 840 mlaconj4 844 comanblem2 871 oaidlem2 931 oaidlem2g 932 oa6v4v 933 oa3to4lem1 945 oa3to4lem2 946 oa4to6lem1 960 oa4to6lem2 961 oa4to6lem3 962 oaliii 1001 oath1 1004 oalem1 1005 oadist 1019 4oath1 1041 lem3.3.7i1e2 1061 lem3.4.3 1076 lem4.6.2e1 1082 |
Copyright terms: Public domain | W3C validator |