| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > i3con1 | GIF version | ||
| Description: Contrapositive. (Contributed by NM, 7-Nov-1997.) |
| Ref | Expression |
|---|---|
| i3con1.1 | (a⊥ →3 b⊥ ) = 1 |
| Ref | Expression |
|---|---|
| i3con1 | (b →3 a) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i3con1.1 | . . 3 (a⊥ →3 b⊥ ) = 1 | |
| 2 | 1 | binr1 517 | . 2 (b⊥ ⊥ →3 a⊥ ⊥ ) = 1 |
| 3 | ax-a1 30 | . 2 b = b⊥ ⊥ | |
| 4 | ax-a1 30 | . 2 a = a⊥ ⊥ | |
| 5 | 2, 3, 4 | i33tr1 529 | 1 (b →3 a) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 1wt 8 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |