Theorem List for Quantum Logic Explorer - 501-600 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | i3n2 501 |
Equivalence for Kalmbach implication. (Contributed by NM, 9-Nov-1997.)
|
(a⊥ →3 b⊥ ) = ((a ∩ b)
∪ ((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) |
|
Theorem | ni32 502 |
Equivalence for Kalmbach implication. (Contributed by NM, 9-Nov-1997.)
|
(a →3 b)⊥ = ((a ∪ b)
∩ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) |
|
Theorem | oi3ai3 503 |
Theorem for Kalmbach implication. (Contributed by NM, 9-Nov-1997.)
|
((a ∩ b)
∪ (a →3 b)⊥ ) = ((a ∪ b)
∩ (a⊥ →3
b⊥
)) |
|
Theorem | i3lem1 504 |
Lemma for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = a⊥ |
|
Theorem | i3lem2 505 |
Lemma for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ a C b |
|
Theorem | i3lem3 506 |
Lemma for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ ((a⊥ ∪ b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
|
Theorem | i3lem4 507 |
Lemma for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ (a⊥ ∪ b) = 1 |
|
Theorem | comi31 508 |
Commutation theorem. (Contributed by NM, 9-Nov-1997.)
|
a C (a
→3 b) |
|
Theorem | com2i3 509 |
Commutation theorem. (Contributed by NM, 9-Nov-1997.)
|
a C b
& a
C c ⇒ a C (b
→3 c) |
|
Theorem | comi32 510 |
Commutation theorem. (Contributed by NM, 9-Nov-1997.)
|
a C b ⇒ a C (b
→3 a) |
|
Theorem | lem4 511 |
Lemma 4 of Kalmbach p. 240. (Contributed by NM, 5-Nov-1997.)
|
(a →3 (a →3 b)) = (a⊥ ∪ b) |
|
Theorem | i0i3 512 |
Translation to Kalmbach implication. (Contributed by NM,
9-Nov-1997.)
|
(a⊥ ∪ b) = 1 ⇒ (a →3 (a →3 b)) = 1 |
|
Theorem | i3i0 513 |
Translation from Kalmbach implication. (Contributed by NM,
9-Nov-1997.)
|
(a →3 (a →3 b)) = 1 ⇒ (a⊥ ∪ b) = 1 |
|
Theorem | ska14 514 |
Soundness proof for KA14. (Contributed by NM, 3-Nov-1997.)
|
((a⊥ ∪ b) →3 (a →3 (a →3 b))) = 1 |
|
Theorem | i3le 515 |
L.e. to Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ a ≤ b |
|
Theorem | bii3 516 |
Biconditional implies Kalmbach implication. (Contributed by NM,
9-Nov-1997.)
|
((a ≡ b)
→3 (a →3
b)) = 1 |
|
Theorem | binr1 517 |
Pavicic binary logic ax-r1 35 analog. (Contributed by NM,
7-Nov-1997.)
|
(a →3 b) = 1 ⇒ (b⊥ →3 a⊥ ) = 1 |
|
Theorem | binr2 518 |
Pavicic binary logic ax-r2 36 analog. (Contributed by NM,
7-Nov-1997.)
|
(a →3 b) = 1
& (b
→3 c) =
1 ⇒ (a →3 c) = 1 |
|
Theorem | binr3 519 |
Pavicic binary logic ax-r3 439 analog. (Contributed by NM,
7-Nov-1997.)
|
(a →3 c) = 1
& (b
→3 c) =
1 ⇒ ((a ∪ b)
→3 c) = 1 |
|
Theorem | i31 520 |
Theorem for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a →3 1) = 1 |
|
Theorem | i3aa 521 |
Add antecedent. (Contributed by NM, 7-Nov-1997.)
|
a = 1 ⇒ (b →3 a) = 1 |
|
Theorem | i3abs1 522 |
Antecedent absorption. (Contributed by NM, 16-Nov-1997.)
|
(a →3 (a →3 (a →3 b))) = (a
→3 (a →3
b)) |
|
Theorem | i3abs2 523 |
Antecedent absorption. (Contributed by NM, 9-Nov-1997.)
|
(a →3 (a →3 (a →3 b))) = 1 ⇒ (a →3 (a →3 b)) = 1 |
|
Theorem | i3abs3 524 |
Antecedent absorption. (Contributed by NM, 19-Nov-1997.)
|
((a →3 b) →3 ((a →3 b) →3 a)) = ((a
→3 b) →3
a) |
|
Theorem | i3orcom 525 |
Commutative law for conjunction with Kalmbach implication. (Contributed
by NM, 7-Nov-1997.)
|
((a ∪ b)
→3 (b ∪ a)) = 1 |
|
Theorem | i3ancom 526 |
Commutative law for disjunction with Kalmbach implication. (Contributed
by NM, 7-Nov-1997.)
|
((a ∩ b)
→3 (b ∩ a)) = 1 |
|
Theorem | bi3tr 527 |
Transitive inference. (Contributed by NM, 7-Nov-1997.)
|
a = b
& (b
→3 c) =
1 ⇒ (a →3 c) = 1 |
|
Theorem | i3btr 528 |
Transitive inference. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1
& b =
c ⇒ (a →3 c) = 1 |
|
Theorem | i33tr1 529 |
Transitive inference useful for introducing definitions. (Contributed
by NM, 7-Nov-1997.)
|
(a →3 b) = 1
& c =
a
& d =
b ⇒ (c →3 d) = 1 |
|
Theorem | i33tr2 530 |
Transitive inference useful for eliminating definitions. (Contributed
by NM, 7-Nov-1997.)
|
(a →3 b) = 1
& a =
c
& b =
d ⇒ (c →3 d) = 1 |
|
Theorem | i3con1 531 |
Contrapositive. (Contributed by NM, 7-Nov-1997.)
|
(a⊥ →3 b⊥ ) = 1
⇒ (b →3 a) = 1 |
|
Theorem | i3ror 532 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ ((a ∪ c)
→3 (b ∪ c)) = 1 |
|
Theorem | i3lor 533 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ ((c ∪ a)
→3 (c ∪ b)) = 1 |
|
Theorem | i32or 534 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1
& (c
→3 d) =
1 ⇒ ((a ∪ c)
→3 (b ∪ d)) = 1 |
|
Theorem | i3ran 535 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ ((a ∩ c)
→3 (b ∩ c)) = 1 |
|
Theorem | i3lan 536 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1 ⇒ ((c ∩ a)
→3 (c ∩ b)) = 1 |
|
Theorem | i32an 537 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1
& (c
→3 d) =
1 ⇒ ((a ∩ c)
→3 (b ∩ d)) = 1 |
|
Theorem | i3ri3 538 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1
& (b
→3 a) =
1 ⇒ ((a →3 c) →3 (b →3 c)) = 1 |
|
Theorem | i3li3 539 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1
& (b
→3 a) =
1 ⇒ ((c →3 a) →3 (c →3 b)) = 1 |
|
Theorem | i32i3 540 |
WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.)
|
(a →3 b) = 1
& (b
→3 a) = 1 & (c →3 d) = 1
& (d
→3 c) =
1 ⇒ ((a →3 c) →3 (b →3 d)) = 1 |
|
Theorem | i0i3tr 541 |
Transitive inference. (Contributed by NM, 9-Nov-1997.)
|
(a →3 (a →3 b)) = 1
& (b
→3 c) =
1 ⇒ (a →3 (a →3 c)) = 1 |
|
Theorem | i3i0tr 542 |
Transitive inference. (Contributed by NM, 9-Nov-1997.)
|
(a →3 b) = 1
& (b
→3 (b →3
c)) = 1
⇒ (a →3 (a →3 c)) = 1 |
|
Theorem | i3th1 543 |
Theorem for Kalmbach implication. (Contributed by NM, 16-Nov-1997.)
|
(a →3 (a →3 (b →3 a))) = 1 |
|
Theorem | i3th2 544 |
Theorem for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a →3 (b →3 (b →3 a))) = 1 |
|
Theorem | i3th3 545 |
Theorem for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a⊥ →3 (a →3 (a →3 b))) = 1 |
|
Theorem | i3th4 546 |
Theorem for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
|
(a →3 (b →3 b)) = 1 |
|
Theorem | i3th5 547 |
Theorem for Kalmbach implication. (Contributed by NM, 16-Nov-1997.)
|
((a →3 b) →3 (a →3 (a →3 b))) = 1 |
|
Theorem | i3th6 548 |
Theorem for Kalmbach implication. (Contributed by NM, 16-Nov-1997.)
|
((a →3 (a →3 (a →3 b))) →3 (a →3 (a →3 b))) = 1 |
|
Theorem | i3th7 549 |
Theorem for Kalmbach implication. (Contributed by NM, 19-Nov-1997.)
|
(a →3 ((a →3 b) →3 a)) = 1 |
|
Theorem | i3th8 550 |
Theorem for Kalmbach implication. (Contributed by NM, 19-Nov-1997.)
|
((a →3 b)⊥ →3 ((a →3 b) →3 a)) = 1 |
|
Theorem | i3con 551 |
Theorem for Kalmbach implication. (Contributed by NM, 9-Nov-1997.)
|
((a →3 b) →3 ((a →3 b) →3 (b⊥ →3 a⊥ ))) = 1 |
|
Theorem | i3orlem1 552 |
Lemma for Kalmbach implication OR builder. (Contributed by NM,
11-Nov-1997.)
|
((a ∪ c)
∩ ((a ∪ c)⊥ ∪ (b ∪ c)))
≤ ((a ∪ c) →3 (b ∪ c)) |
|
Theorem | i3orlem2 553 |
Lemma for Kalmbach implication OR builder. (Contributed by NM,
11-Nov-1997.)
|
(a ∩ b) ≤
((a ∪ c) →3 (b ∪ c)) |
|
Theorem | i3orlem3 554 |
Lemma for Kalmbach implication OR builder. (Contributed by NM,
11-Nov-1997.)
|
c ≤ ((a
∪ c) →3 (b ∪ c)) |
|
Theorem | i3orlem4 555 |
Lemma for Kalmbach implication OR builder. (Contributed by NM,
11-Nov-1997.)
|
((a ∪ c)⊥ ∩ (b ∪ c))
≤ ((a ∪ c) →3 (b ∪ c)) |
|
Theorem | i3orlem5 556 |
Lemma for Kalmbach implication OR builder. (Contributed by NM,
11-Nov-1997.)
|
((a⊥ ∩ b⊥ ) ∩ c⊥ ) ≤ ((a ∪ c)
→3 (b ∪ c)) |
|
Theorem | i3orlem6 557 |
Lemma for Kalmbach implication OR builder. (Contributed by NM,
11-Nov-1997.)
|
((a →3 b)⊥ ∪ ((a ∪ c)
→3 (b ∪ c))) = (((a
∪ b) ∩ (a⊥ →3 b⊥ )) ∪ ((a ∪ c)
→3 (b ∪ c))) |
|
Theorem | i3orlem7 558 |
Lemma for Kalmbach implication OR builder. (Contributed by NM,
11-Nov-1997.)
|
(a ∩ b⊥ ) ≤ ((a →3 b)⊥ ∪ ((a ∪ c)
→3 (b ∪ c))) |
|
Theorem | i3orlem8 559 |
Lemma for Kalmbach implication OR builder. (Contributed by NM,
11-Nov-1997.)
|
(((a ∪ b)
∩ (a ∪ b⊥ )) ∩ a⊥ ) ≤ ((a →3 b)⊥ ∪ ((a ∪ c)
→3 (b ∪ c))) |
|
0.3.5 Unified disjunction
|
|
Theorem | ud1lem1 560 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a →1 b) →1 (b →1 a)) = (a ∪
(a⊥ ∩ b⊥ )) |
|
Theorem | ud1lem2 561 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a ∪ (a⊥ ∩ b⊥ )) →1 a) = (a ∪
b) |
|
Theorem | ud1lem3 562 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a →1 b) →1 (a ∪ b)) =
(a ∪ b) |
|
Theorem | ud2lem1 563 |
Lemma for unified disjunction. (Contributed by NM, 22-Nov-1997.)
|
((a →2 b) →2 (b →2 a)) = (a ∪
(a⊥ ∩ b⊥ )) |
|
Theorem | ud2lem2 564 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a ∪ (a⊥ ∩ b⊥ )) →2 a) = (a ∪
b) |
|
Theorem | ud2lem3 565 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a →2 b) →2 (a ∪ b)) =
(a ∪ b) |
|
Theorem | ud3lem1a 566 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b)⊥ ∩ (b →3 a)) = (a ∩
b⊥ ) |
|
Theorem | ud3lem1b 567 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b)⊥ ∩ (b →3 a)⊥ ) = 0 |
|
Theorem | ud3lem1c 568 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b)⊥ ∪ (b →3 a)) = (a ∪
b⊥ ) |
|
Theorem | ud3lem1d 569 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b) ∩ ((a
→3 b)⊥
∪ (b →3 a))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) |
|
Theorem | ud3lem1 570 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b) →3 (b →3 a)) = (a ∪
(a⊥ ∩ b⊥ )) |
|
Theorem | ud3lem2 571 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a ∪ (a⊥ ∩ b⊥ )) →3 a) = (a ∪
b) |
|
Theorem | ud3lem3a 572 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b)⊥ ∩ (a ∪ b)) =
(a →3 b)⊥ |
|
Theorem | ud3lem3b 573 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b)⊥ ∩ (a ∪ b)⊥ ) = 0 |
|
Theorem | ud3lem3c 574 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b)⊥ ∪ (a ∪ b)) =
(a ∪ b) |
|
Theorem | ud3lem3d 575 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b) ∩ ((a
→3 b)⊥
∪ (a ∪ b))) = ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
|
Theorem | ud3lem3 576 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →3 b) →3 (a ∪ b)) =
(a ∪ b) |
|
Theorem | ud4lem1a 577 |
Lemma for unified disjunction. (Contributed by NM, 24-Nov-1997.)
|
((a →4 b) ∩ (b
→4 a)) = ((a ∩ b)
∪ (a⊥ ∩ b⊥ )) |
|
Theorem | ud4lem1b 578 |
Lemma for unified disjunction. (Contributed by NM, 25-Nov-1997.)
|
((a →4 b)⊥ ∩ (b →4 a)) = (a ∩
b⊥ ) |
|
Theorem | ud4lem1c 579 |
Lemma for unified disjunction. (Contributed by NM, 25-Nov-1997.)
|
((a →4 b)⊥ ∪ (b →4 a)) = (a ∪
b⊥ ) |
|
Theorem | ud4lem1d 580 |
Lemma for unified disjunction. (Contributed by NM, 25-Nov-1997.)
|
(((a →4 b)⊥ ∪ (b →4 a)) ∩ (b
→4 a)⊥ )
= (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ a) |
|
Theorem | ud4lem1 581 |
Lemma for unified disjunction. (Contributed by NM, 25-Nov-1997.)
|
((a →4 b) →4 (b →4 a)) = (a ∪
(a⊥ ∩ b⊥ )) |
|
Theorem | ud4lem2 582 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a ∪ (a⊥ ∩ b⊥ )) →4 a) = (a ∪
b) |
|
Theorem | ud4lem3a 583 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a →4 b)⊥ ∩ (a ∪ b)) =
(a →4 b)⊥ |
|
Theorem | ud4lem3b 584 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a →4 b)⊥ ∪ (a ∪ b)) =
(a ∪ b) |
|
Theorem | ud4lem3 585 |
Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
|
((a →4 b) →4 (a ∪ b)) =
(a ∪ b) |
|
Theorem | ud5lem1a 586 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →5 b) ∩ (b
→5 a)) = ((a ∩ b)
∪ (a⊥ ∩ b⊥ )) |
|
Theorem | ud5lem1b 587 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →5 b)⊥ ∩ (b →5 a)) = (a ∩
b⊥ ) |
|
Theorem | ud5lem1c 588 |
Lemma for unified disjunction. (Contributed by NM, 26-Nov-1997.)
|
((a →5 b)⊥ ∩ (b →5 a)⊥ ) = (((a ∪ b)
∩ (a ∪ b⊥ )) ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
|
Theorem | ud5lem1 589 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →5 b) →5 (b →5 a)) = (a ∪
b⊥ ) |
|
Theorem | ud5lem2 590 |
Lemma for unified disjunction. (Contributed by NM, 10-Apr-2012.)
|
((a ∪ b⊥ ) →5 a) = (a ∪
(a⊥ ∩ b)) |
|
Theorem | ud5lem3a 591 |
Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.)
|
((a →5 b) ∩ (a
∪ (a⊥ ∩ b))) = ((a
∩ b) ∪ (a⊥ ∩ b)) |
|
Theorem | ud5lem3b 592 |
Lemma for unified disjunction. (Contributed by NM, 26-Nov-1997.)
|
((a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a ∩
(a⊥ ∪ b⊥ )) |
|
Theorem | ud5lem3c 593 |
Lemma for unified disjunction. (Contributed by NM, 26-Nov-1997.)
|
((a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))⊥ ) = (((a ∪ b)
∩ (a ∪ b⊥ )) ∩ a⊥ ) |
|
Theorem | ud5lem3 594 |
Lemma for unified disjunction. (Contributed by NM, 26-Nov-1997.)
|
((a →5 b) →5 (a ∪ (a⊥ ∩ b))) = (a ∪
b) |
|
Theorem | ud1 595 |
Unified disjunction for Sasaki implication. (Contributed by NM,
23-Nov-1997.)
|
(a ∪ b) =
((a →1 b) →1 (((a →1 b) →1 (b →1 a)) →1 a)) |
|
Theorem | ud2 596 |
Unified disjunction for Dishkant implication. (Contributed by NM,
23-Nov-1997.)
|
(a ∪ b) =
((a →2 b) →2 (((a →2 b) →2 (b →2 a)) →2 a)) |
|
Theorem | ud3 597 |
Unified disjunction for Kalmbach implication. (Contributed by NM,
23-Nov-1997.)
|
(a ∪ b) =
((a →3 b) →3 (((a →3 b) →3 (b →3 a)) →3 a)) |
|
Theorem | ud4 598 |
Unified disjunction for non-tollens implication. (Contributed by NM,
23-Nov-1997.)
|
(a ∪ b) =
((a →4 b) →4 (((a →4 b) →4 (b →4 a)) →4 a)) |
|
Theorem | ud5 599 |
Unified disjunction for relevance implication. (Contributed by NM,
23-Nov-1997.)
|
(a ∪ b) =
((a →5 b) →5 (((a →5 b) →5 (b →5 a)) →5 a)) |
|
0.3.6 Lemmas for unified implication
study
|
|
Theorem | u1lemaa 600 |
Lemma for Sasaki implication study. Equation 4.10 of [MegPav2000] p. 23.
This is the second part of the equation. (Contributed by NM,
14-Dec-1997.)
|
((a →1 b) ∩ a) =
(a ∩ b) |