QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  binr1 GIF version

Theorem binr1 517
Description: Pavicic binary logic ax-r1 35 analog. (Contributed by NM, 7-Nov-1997.)
Hypothesis
Ref Expression
binr1.1 (a3 b) = 1
Assertion
Ref Expression
binr1 (b3 a ) = 1

Proof of Theorem binr1
StepHypRef Expression
1 binr1.1 . . . 4 (a3 b) = 1
21i3le 515 . . 3 ab
32lecon 154 . 2 ba
43lei3 246 1 (b3 a ) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  i3con1  531  i3ran  535  i3i0tr  542
  Copyright terms: Public domain W3C validator